Skip to main content
Log in

The fate of branched and linear isomers in the rhodium-catalyzed hydroformylation of 3,4,4-trimethylpent-1-ene

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In nonreversible hydroformylations, the computational evaluation of regio- and stereoselectivities from the relative energy barriers of the transition states (TS) for the alkyl-Rh intermediate formation step is possible, provided all low energy conformers are considered. In contrast, in reversible hydroformylations, also the subsequent reaction steps need to be taken into account to shed some light on mechanistic details. Thus, an extensive comparison of branched (B) and linear (L) reaction pathways for the Rh-catalyzed hydroformylation of 3,4,4-trimethylpent-1-ene (a bulky chiral substrate), going from a number of reactant complexes to products, has been carried out to rationalize the experimental result that pointed to reaction reversibility, although the value of the regioselectivity ratio (B:L = 15:85), based on alkyl-Rh TS free energies, computed under the hypothesis of nonreversibility, was in satisfactory agreement with the experimental one (5:95). A density functional theory approach at the B3P86/6-31G* level coupled to effective core potentials for Rh in the LanL2DZ valence basis set has been employed. By comparing the activation free energies involved in the various steps for the different reactant adducts, interestingly a similar behavior along all the linear pathways is found: the alkyl-Rh formation TS presents the highest barrier; thus, the reaction is nonreversible for all the linear isomers that invariably proceed to yield the linear aldehyde. Conversely, the behavior is quite different along the branched pathways. While some branched isomers eventually produce the corresponding aldehydes, two of the others follow distinct competing pathways, because β-hydride elimination occurs (a) to the terminal olefin-Rh complex (the starting material) that reacts again with the original regioselectivity, increasing the linear fraction, when the CO addition and insertion TS are higher than the alkyl-Rh TS and (b) to the internal olefin-Rh complex when the CO addition and insertion TS are higher than the relevant β-hydride elimination TS, but not than the alkyl-Rh TS. The solvent effect on the reversible profile, evaluated either in the supermolecule approach by adding a benzene molecule to the calculations or in the IEF-PCM framework (ε = 2.247), does not bring about any substantial change in the profile, leaving unaltered the conclusions reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. Notice that to simplify the notation, only B3P86/6-31G* is reported throughout.

  2. Following the suggestion by Jonas and Thiel [46], who systematically investigated the performance of a variety of basis sets and methods (HF, DFT, and MP2) in transition metal carbonyls but Rh ones, we initially adopted BP86. Tests carried out in Ref. [28] on hydroformylations with Rh carbonyls supported the use of B3 instead.

  3. MP2 is often unreliable with transition metal systems [47, 48], if coupled to a basis set with limited virtual space, as is the case of 6-31G*.

  4. Occasionally, the CO groups in the plane roughly perpendicular to H–Rh–CO can swap their positions, thus inverting the pyramid orientation.

  5. Interestingly enough, the potential- and free-energy-based diastereoselectivity ratios (b:b′) are conversely very similar to each other, that is, 78:22 (ΔE) and 79:21 (ΔG); the difference between potential- and free-energy-based regioselectivity ratios thus depends on the linear regioisomers. Using a formula analogous to Eq. 2 and replacing b and b′ with the computationally available l and l′ populations, the two l:l′ potential- and free-energy-based diastereoselectivity ratios actually turn out to be 59:41 and 86.3:13.7, respectively.

  6. Thus two species react to give just one new compound.

  7. For branched structures, out of the two with a suitable orientation.

  8. The intermediate corresponding to “TSH2 b′2 in p” is “H2Int-b′2 in p” (reported in Table 6 and displayed in Fig. S8) that evolves to the branched aldehyde through “TS–H2 b’2 in p” (∆G=15.13 kcal/mol), that is, with a much higher barrier than when the hydrogens are in the basal CO plane.

  9. The most critical case because of TS relative values, involving β-elimination leading either to internal or initial olefin.

References

  1. Roelen O (1938) (Ruhrchemie AG). D. B. P. 849 458

  2. Roelen O (1953) Chem Zentr 927–929

  3. Cornils B, Herrmann WA (1996) Applied homogeneous catalysis with organometallic compounds, vol 1. Wiley, New York, pp 3–25

    Book  Google Scholar 

  4. Papadogianakis G, Sheldon RA (1996) New J Chem 20:175–185

    CAS  Google Scholar 

  5. Süss-Fink G, Meister G (1993) Adv Organomet Chem 35:41–134

    Article  Google Scholar 

  6. Versluis L, Ziegler T, Fan L (1990) Inorg Chem 29:4530–4536

    Article  CAS  Google Scholar 

  7. Wender I, Pino P (1977) Organic syntheses via metal carbonyls, vol 2. Wiley, New York

    Google Scholar 

  8. Falbe J (1980) New nyntheses with carbon monoxide. Springer, Berlin

    Book  Google Scholar 

  9. Pignolet LH (ed) (1983) Homogeneous catalysis with metal phosphine complexes. Plenum, New York

    Google Scholar 

  10. Casey CP, Petrovich LM (1995) J Am Chem Soc 117:6007–6014

    Article  CAS  Google Scholar 

  11. Casey CP, Paulsen EL, Bettenmueller EW, Proft BR, Matter BA, Powell DR (1999) J Am Chem Soc 119:11817–11825

    Article  Google Scholar 

  12. Van Leeuwen PWNM, Kamer PCJ, Reek JNH (1999) Pure Appl Chem 71:1443–1452

    Article  Google Scholar 

  13. Nozaki K, Sakai N, Nanno T, Higashijima T, Mano S, Horiuchi T, Takaya H (1997) J Am Chem Soc 119:4413–4423 and refs quoted therein

    Google Scholar 

  14. Herrmann WA, Kohlpaintner CW, Herdtwck E, Kiprof P (1991) Inorg Chem 30:4271–4275

    Article  CAS  Google Scholar 

  15. Herrmann WA, Schmid R, Kohlpaintner CW, Priermeier T (1995) Organometallics 14:1961–1968

    Article  CAS  Google Scholar 

  16. Decker SA, Cundari TR (2001) Organometallics 20:2827–2841

    Article  CAS  Google Scholar 

  17. Decker SA, Cundari TR (2001) J Organomet Chem 635:132–141

    Article  CAS  Google Scholar 

  18. Decker SA, Cundari TR (2002) New J Chem 26:129–135

    Article  CAS  Google Scholar 

  19. Rocha WR, De Almeida WB (2000) Int J Quantum Chem 78:42–51

    Article  CAS  Google Scholar 

  20. Dias RP, Prates MSL Jr, De Almeida WB, Rocha WR (2011) Int J Quantum Chem 111:1280–1292

    Article  CAS  Google Scholar 

  21. Carbó JJ, Maseras F, Bo C, van Leeuwen PW (2001) J Am Chem Soc 123:7630–7637

    Article  Google Scholar 

  22. Landis CR, Uddin J (2002) J Chem Soc, Dalton Trans 729–742

  23. Beller M, Cornils B, Frohning CD, Kohlpaintner CW (1995) J Mol Cat A Chem 104:17–85

    Article  CAS  Google Scholar 

  24. Pidun U, Frenking G (1998) Chem Eur J 4:522–540

    Article  CAS  Google Scholar 

  25. Torrent M, Solà M, Frenking G (2000) Chem Rev 100:439–493 and refs quoted therein

    Google Scholar 

  26. Consiglio G, Pino P (1982) Top Curr Chem 105:77–123

    Article  CAS  Google Scholar 

  27. Gleich D, Schmid R, Herrmann WA (1998) Organometallics 17:4828–4834

    Article  CAS  Google Scholar 

  28. Alagona G, Ghio C, Lazzaroni R, Settambolo R (2001) Organometallics 20:5394–5404

    Article  CAS  Google Scholar 

  29. Alagona G, Ghio C, Lazzaroni R, Settambolo R (2004) Inorg Chim Acta 357:2980–2988

    Article  CAS  Google Scholar 

  30. Alagona G, Ghio C (2005) J Organomet Chem 690:2339–2350

    Article  CAS  Google Scholar 

  31. Settambolo R, Rocchiccioli S, Lazzaroni R, Alagona G (2006) Lett Org Chem 3:10–12

    Article  CAS  Google Scholar 

  32. Alagona G, Ghio C, Rocchiccioli S (2007) J Mol Model 13:823–837

    Article  CAS  Google Scholar 

  33. Lazzaroni R, Settambolo R, Marchetti M, Paganelli S, Alagona G, Ghio C (2008) Inorg Chim Acta 362:1641–1644

    Article  Google Scholar 

  34. Ghio C, Lazzaroni R, Alagona G, (2009) Eur J Inorg Chem 98–103

  35. Lazzaroni R, Settambolo R, Alagona G, Ghio C (2010) Coord Chem Rev 254:696–706. Erratum in: (2011) Coord Chem Rev 255:3031

  36. Alagona G, Lazzaroni R, Ghio C (2011) J Mol Model 17:2275–2284. Erratum. doi:10.1007/s00894-012-1373-8

    Google Scholar 

  37. Lazzaroni R, Settambolo R, Alagona G, Ghio C (2012) J Mol Cat A Chem. doi:10.1016/j.molcata.2011.12.021

  38. McQuarrie DA (2000) Statistical mechanics. University Science Book, Sausalito

    Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian Inc., Wallingford

  40. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  41. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  42. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  43. Dunning TH Jr, Hay PJ (1976) In: Schaefer HF III (ed) Modern theoretical chemistry. Plenum, New York, pp 1–28

    Google Scholar 

  44. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  45. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  46. Jonas V, Thiel W (1995) J Chem Phys 102:8474–8484

    Article  CAS  Google Scholar 

  47. Goh SR, Marynick DS (2002) Organometallics 21:2262–2267

    Article  CAS  Google Scholar 

  48. Frenking G, Antes I, Boehme M, Dapprich S, Ehlers AW, Jonas V, Nehaus A, Otto M, Stegmann R, Veldjamp A, Vyboishchikov SF (1996) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8. VCH, New York, pp 63–144

    Chapter  Google Scholar 

  49. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  50. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  51. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  52. Cancès E, Mennucci B (1998) J Chem Phys 109:249–259

    Article  Google Scholar 

  53. Cancès E, Mennucci B, Tomasi J (1998) J Chem Phys 109:260–266

    Article  Google Scholar 

  54. Amovilli C, Barone V, Cammi R, Cancès E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1998) Adv Quantum Chem 32:227–261

    Article  Google Scholar 

  55. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  56. Tomasi J (2007) In: Mennucci B, Cammi R (eds) Continuum solvation models in chemical physics: from theory to applications. Wiley, New York, pp 1–28

    Chapter  Google Scholar 

  57. Schaftenaar G, Noordik JH (2000) J Comput Aided Mol Design 14:123–134

    Article  CAS  Google Scholar 

  58. Curtin DY (1954) Rec Chem Prog 15:111–128

    CAS  Google Scholar 

  59. Hammett LP (1970) Physical organic chemistry, 2nd edn. McGraw-Hill, New York, pp 119–120 Chapter 5

    Google Scholar 

  60. Seeman JI (1983) Chem Rev 83:84–134

    Article  Google Scholar 

  61. Matsubara T, Koga N, Ding Y, Musaev DG, Morokuma K (1997) Organometallics 16:1065–1078

    Article  CAS  Google Scholar 

  62. Yagupsky G, Brown CK, Wilkinson G (1969) J Chem Soc Chem Comm 1244–1245

  63. Yagupsky G, Brown CK, Wilkinson G (1970) J Chem Soc A 1392–1401

  64. Tang D, Qin S, Su Z, Hu C (2007) Organometallics 26:33–47

    Article  CAS  Google Scholar 

  65. Nowroozi-Isfahani T, Musaev DG, McDonald FE, Morokuma K (2005) Organometallics 24:2921–2929

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Alagona.

Additional information

Dedicated to Professor Vincenzo Barone and published as part of the special collection of articles celebrating his 60th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 21209 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alagona, G., Ghio, C. The fate of branched and linear isomers in the rhodium-catalyzed hydroformylation of 3,4,4-trimethylpent-1-ene. Theor Chem Acc 131, 1142 (2012). https://doi.org/10.1007/s00214-012-1142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1142-x

Keywords

Navigation