Skip to main content
Log in

A density functional theory study of the ‘mythic’ Lindlar hydrogenation catalyst

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A Lindlar catalyst is a popular heterogeneous catalyst that consists of 5 wt.% palladium supported on porous calcium carbonate and treated with various forms of lead and quinoline. The additives strategically deactivate palladium sites. The catalyst is widely used for the partial hydrogenation of acetylenic compounds in organic syntheses. Alkyne reduction is stereoselective, occurring via syn addition to give the cis-alkene. Even if it has been employed for about 60 years, there is a lack of molecular level understanding of the Lindlar catalyst. We have applied density functional theory simulations to understand the structure and the nature of the interplay between the multiple chemical modifiers in the Lindlar catalyst. Indeed, the poisons influence different parameters controlling selectivity to the alkene: Pb modifies the thermodynamic factor and hinders the formation of hydrides, while quinoline isolates Pd sites thus minimizing oligomerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Somorjai GA, Borodko YG (2001) Catal Lett 76:1

    Article  CAS  Google Scholar 

  2. Corma A, Serna P (2006) Science 313:33

    Article  Google Scholar 

  3. Molnar A, Sarkany A, Varga M (2001) J Mol Catal A 173:185

    Article  CAS  Google Scholar 

  4. Chorkendorff I, Niemantsverdriet HW (2003) Concepts of modern catalysis and kinetics. Wiley-VCH Verlag GMBH KGaA, Weinheim

    Book  Google Scholar 

  5. García-Mota M, Cabello N, Maseras F, Echavarren AM, Pérez-Ramírez J, López N (2008) Chem Phys Chem 9:1624

    Article  Google Scholar 

  6. Plata JJ, García-Mota M, Braga AAC, Maseras F, López N (2009) J Phys Chem A 113:11758

    Article  CAS  Google Scholar 

  7. Mei DH, Sheth PA, Neurock M, Smith CM (2006) J Catal 242:1

    Article  CAS  Google Scholar 

  8. Mei DH, Neurock M, Smith CM (2009) J Catal 268:181

    Article  CAS  Google Scholar 

  9. García-Mota M, Bridier B, Pérez-Ramírez J, López N (2010) J Catal 273:92

    Article  Google Scholar 

  10. Studt F, Abild-Pedersen F, Bligaard T, Sorensen RZ, Christensen CH, Nørskov JK (2008) Science 320:1320

    Article  CAS  Google Scholar 

  11. Lindlar H (1952) Helv Chim Acta 35:446

    Article  CAS  Google Scholar 

  12. Lindlar H, Dubuis R (1973) Org Synth 5:880

    Google Scholar 

  13. Mallat T, Baiker A (1991) Appl Catal 79:59

    Article  CAS  Google Scholar 

  14. Stachurski J, Thomas JM (1988) Catal Lett 1:67

    Article  CAS  Google Scholar 

  15. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1990) Binary alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  16. Chadwick D, Karolewski MA (1983) Surf Sci 126:41

    Article  CAS  Google Scholar 

  17. Liu G, Davis KA, Meier DC, Bagus PS, Goodman DW (2003) Phys Rev B 68:035406

    Article  Google Scholar 

  18. Palczewska W, Szymerska I, Ratajczykowa I, Lipski M (1980) In: Proc ECOSS-3 and ICCS-4 Cannes

  19. Szabo S (1991) Int Rev Phys Chem 10:207

    Article  CAS  Google Scholar 

  20. Mallat T, Baiker A (1995) Top Catal 8:115

    Article  Google Scholar 

  21. McEwen AB, Guttieri MJ, Maier WF, Laine RE, Shvo Y (1983) J Org Chem 48:4436

    Article  CAS  Google Scholar 

  22. Mallat T, Baiker A (2000) App Catal A 200:3

    Article  CAS  Google Scholar 

  23. Maier WF, Chettle SB, Rai RS, Thomas G (1986) J Am Chem Soc 108:2608

    Article  CAS  Google Scholar 

  24. Yu J, Spencer JB (1998) Chem Commun 1103

  25. Segura Y, López N, Pérez-Ramírez J (2007) J Catal 247:383

    Article  CAS  Google Scholar 

  26. Bridier B, López N, Pérez-Ramírez J (2010) J Catal 269:80

    Article  CAS  Google Scholar 

  27. Bridier B, Pérez-Ramírez J (2010) J Am Chem Soc 132:4321

    Article  CAS  Google Scholar 

  28. Oroshnik W (1977) Synthesis of Vitamin A, intermediates and conversion thereof to Vitamin A “4058569”

  29. Coq B, Figueras F (2001) J Mol Catal A 173:117

    Article  CAS  Google Scholar 

  30. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  31. Perdew JP, Chevary A, Vosko SH, Jackson KA, Pederson MR, Singh DJ (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  32. Blochl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  33. Monkhorst HJ, Pack JD (1976) Phys Rev B 12:5188

    Article  Google Scholar 

  34. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:990

    Google Scholar 

  35. Soto-Verdugo V, Metiu H (2007) Surf Sci 601:5332

    Article  CAS  Google Scholar 

  36. Ulan JG, Maier WF, Smith DA (1987) J Org Chem 52:3132

    Article  CAS  Google Scholar 

  37. Ulan JG, Kuo E, Maier WF, Rai RS, Thomas G (1987) J Org Chem 52:3126

    Article  CAS  Google Scholar 

  38. Schlogl R, Noack K, Zbinden H, Reller A (1987) Helv Chim Acta 70:627

    Article  Google Scholar 

  39. Hammer B, Morikawa Y, Nørskov JK (1996) Phys Rev Lett 76:2141

    Article  CAS  Google Scholar 

  40. Greenwood NN, Earnshaw A (2008) In: Chemistry of the elements, 2nd edn. Elsevier, p 1150

  41. Knapton AG (1977) Plat Met Rev 21:44

    CAS  Google Scholar 

  42. Andersin J, López N, Honkala K (2009) J Phys Chem C 113:8278

    Article  CAS  Google Scholar 

  43. Andersin J, Honkala K (2010) Surf Sci 604:762

    Article  CAS  Google Scholar 

  44. Nykanen L, Andersin J, Honkala K (2010) Phys Rev B 81:075417

    Article  Google Scholar 

  45. Seriani N, Mittendorfer F, Kresse G (2010) J Chem Phys 132:024711

    Article  Google Scholar 

  46. Bond GC (2005) Springer, New York, p 395

  47. Teschner D, Borsodi J, Wootsch A, Revay Z, Havecker M, Knop-Gericke A, Jackson SD, Schlogl R (2008) Science 320:86

    Article  CAS  Google Scholar 

  48. Mitsui T, Rose MK, Fomin E, Ogletree DF, Salmeron M (2003) Nature 422:705

    Article  CAS  Google Scholar 

  49. López N, Łodziana Z, Illas F, Salmeron M (2004) Phys Rev Lett 14:146103

    Article  Google Scholar 

  50. Greeley J, Krekelberg WR, Mavrikakis M (2004) Angew Chem Int Ed 43:4296

    Article  CAS  Google Scholar 

  51. Palczewska W, Ratajczykowa I, Szymerska I, Krawczyk M (1984). In: Proceedings of the 8th international congress on catalysis, Berlin, vol IV, p 713

  52. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  53. Santarossa G, Iannuzzi M, Vargas A, Baiker A (2008) ChemPhysChem 9:401

    Article  CAS  Google Scholar 

  54. Ulan GJ, Kuo E, Maier WF, Rai RS, Thomas G (1986) J Org Chem 52:3126

    Article  Google Scholar 

  55. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  56. Mercurio G, McNellis ER, Martin I, Hagen S, Leyssner F, Soubatch S, Meyer J, Wolf M, Tegeder P, Tautz FS, Reuter K (2010) Phys Rev Lett 104:036102

    Article  CAS  Google Scholar 

  57. Chen MS, Kumar D, Yi CW, Goodman DW (2005) Science 310:291

    Article  CAS  Google Scholar 

  58. García-Mota M, López N (2008) J Am Chem Soc 130:14406

    Article  Google Scholar 

  59. Jia JF, Haraki K, Kondo JN, Domen K, Tamaru K (2000) J Phys Chem B 104:11153

    Article  CAS  Google Scholar 

  60. Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK (2008) Angew Chem Int Ed 47:9299

    Google Scholar 

  61. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:16105

    Article  CAS  Google Scholar 

  62. Cerveny L, Paseka I, Surma K, Thanh NT, Ruzicka V (1985) Collect Czech Chem Commun 50:61

    Article  CAS  Google Scholar 

  63. Horiuti J, Polanyi M (1934) Trans Faraday Soc 30:1164

    Article  Google Scholar 

  64. Siegel S, Hawkins JA (1986) J Org Chem 51:1638

    Article  CAS  Google Scholar 

  65. Anderson JA, Mellor J, Wells RPK (2009) J Catal 261:208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank MICINN for Grants CTQ2009-07753/BQU and CSD2006-0003 and BSC-RES for providing generous computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. López.

Additional information

Published as part of the special issue celebrating theoretical and computational chemistry in Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Mota, M., Gómez-Díaz, J., Novell-Leruth, G. et al. A density functional theory study of the ‘mythic’ Lindlar hydrogenation catalyst. Theor Chem Acc 128, 663–673 (2011). https://doi.org/10.1007/s00214-010-0800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0800-0

Keywords

Navigation