Skip to main content
Log in

Structure and stability of AuXe Z n (n = 1–3, Z = −1, 0, +1) clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have explored the structures and stabilities of AuXe Z n (n = 1–3, Z = −1, 0, +1) cluster series at CCSD(T) theoretical level. The electron affinities and ionization potentials are correlated to the HOMO–LUMO gaps. The role of the interaction was investigated using the natural bond orbital analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartlett N (1962) Proc Chem Soc 1962:218

    Google Scholar 

  2. Pyykkö P (1988) Chem Rev 88:563. doi:10.1021/cr00085a006

    Article  Google Scholar 

  3. Schwarz H (2003) Angew Chem Int Ed 42:4442. doi:10.1002/anie.200300572

    Article  CAS  Google Scholar 

  4. Leonard RM, Bhuvanesh NSP, Schaak RE (2005) J Am Chem Soc 127:7326. doi:10.1021/ja051481v

    Article  CAS  Google Scholar 

  5. Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896. doi:10.1002/anie.200602454

    Article  Google Scholar 

  6. Jimènez-Nunez E, Echavarren AM (2007) Chem Commun (Camb) 2007:333. doi:10.1039/b612008c

  7. Hamilton GL, Kang EJ, Mba M, Toste FD (2007) Science 317:496. doi:10.1126/science.1145229

    Article  CAS  Google Scholar 

  8. Gorin DJ, Toste FD (2007) Nature 446:395. doi:10.1038/nature05592

    Article  CAS  Google Scholar 

  9. Evans CJ, Gerry MCL (2000) J Chem Phys 112:1321. doi:10.1063/1.480684

    Article  CAS  Google Scholar 

  10. Evans CJ, Gerry MCL (2000) J Chem Phys 112:9363. doi:10.1063/1.481557

    Article  CAS  Google Scholar 

  11. Evans CJ, Lesarri A, Gerry MCL (2000) J Am Chem Soc 122:6100. doi:10.1021/ja000874l

    Article  CAS  Google Scholar 

  12. Evans CJ, Rubino DS, Gerry MCL (2000) Phys Chem Chem Phys 2:3943. doi:10.1039/b004352o

    Article  CAS  Google Scholar 

  13. Reynard LM, Evans CJ, Gerry MCL (2001) J Mol Spectrosc 206:33. doi:10.1006/jmsp.2000.8286

    Article  CAS  Google Scholar 

  14. Walker NR, Reynard LM, Gerry MCL (2002) J Mol Struct 612:109. doi:10.1016/S0022-2860(02)00081-9

    Article  CAS  Google Scholar 

  15. Cooke SA, Gerry MCL (2004) J Am Chem Soc 126:17000. doi:10.1021/ja044955j

    Article  CAS  Google Scholar 

  16. Cooke SA, Gerry MCL (2004) Phys Chem Chem Phys 6:3248. doi:10.1039/b404953p

    Article  CAS  Google Scholar 

  17. Thomas JM, Walker NR, Cooke SA, Gerry MCL (2004) J Am Chem Soc 126:1235. doi:10.1021/ja0304300

    Article  CAS  Google Scholar 

  18. Michaud JM, Cooke SA, Gerry MCL (2004) Inorg Chem 43:3871. doi:10.1021/ic040009s

    Article  CAS  Google Scholar 

  19. Michaud JM, Gerry MCL (2006) J Am Chem Soc 128:7613. doi:10.1021/ja060745q

    Article  CAS  Google Scholar 

  20. Ghanty TK (2005) J Chem Phys 123:074323. doi:10.1063/1.2000254

    Article  Google Scholar 

  21. Ghanty TK (2006) J Chem Phys 124:124304. doi:10.1063/1.2173991

    Article  Google Scholar 

  22. Seidel S, Seppelt K (2000) Science 290:117. doi:10.1126/science.290.5489.117

    Article  CAS  Google Scholar 

  23. Pyykkö P (1995) J Am Chem Soc 117:2067. doi:10.1021/ja00112a021

    Article  Google Scholar 

  24. Schröder D, Schwarz H, Hrusak J, Pyykkö P (1998) Inorg Chem 37:624. doi:10.1021/ic970986m

    Article  Google Scholar 

  25. Read JP, Buckingham AD (1997) J Am Chem Soc 119:9010. doi:10.1021/ja970868y

    Article  CAS  Google Scholar 

  26. Belpassi L, Infante I, Tarantelli F, Visscher L (2008) J Am Chem Soc 130:1048. doi:10.1021/ja0772647

    Article  CAS  Google Scholar 

  27. Breckenridge WH, Ayles VL, Wright TG (2008) J Phys Chem A 112:4209. doi:10.1021/jp711886a

    Article  CAS  Google Scholar 

  28. Nicklass A, Dolg M, Stoll H, Preuss H (1995) J Chem Phys 102:8942. doi:10.1063/1.468948

    Article  CAS  Google Scholar 

  29. Schröder D, Harvey JN, Aschi M, Schwarz H (1998) J Chem Phys 108:8446. doi:10.1063/1.476272

    Article  Google Scholar 

  30. Xinying L, Yongfang Z et al (2005) J Mol Struct THEOCHEM 755:215. doi:10.1016/j.theochem.2005.08.013

    Article  Google Scholar 

  31. Xinying L, Yongfang Z et al (2006) Int J Quantum Chem 106:1086. doi:10.1002/qua.20871

    Article  Google Scholar 

  32. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123. doi:10.1007/BF01114537

    Article  CAS  Google Scholar 

  33. Pyykkö P, Runeberg N, Mendizabal F (1997) Chem Eur J 3:1451. doi:10.1002/chem.19970030911

    Article  Google Scholar 

  34. Boys SF, Bernardi F (1970) Mol Phys 19:553. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW et al (2003) Gaussian 03 W. Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

  36. Reed AE, Weinhold F (1983) J Chem Phys 78:4066. doi:10.1063/1.445134

    Article  CAS  Google Scholar 

  37. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211. doi:10.1021/ja00544a007

    Article  CAS  Google Scholar 

  38. Handbook of chemistry and physics, 70th edn (1989) CRC Press, Boca Raton

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xinying.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xinying, L., Xue, C. & Yongfang, Z. Structure and stability of AuXe Z n (n = 1–3, Z = −1, 0, +1) clusters. Theor Chem Acc 123, 469–475 (2009). https://doi.org/10.1007/s00214-009-0562-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0562-8

Keywords

Navigation