Skip to main content
Log in

DNA bindings of a novel anticancer drug, trans-[PtCl2(isopropylamine)(3-picoline)], and kinetic competition of purine bases with protein residues in the bifunctional substitutions: a theoretical DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The coordination of an activated novel anticancer drug, trans-[PtCl2(ipa)(3-pico)] (ipa = isopropylamine, 3-pico = 3-methylpyridine), to DNA in a two-step process has been studied using a combination of DFT theory and IEF–PCM approach. The computed free energy barrier for the first substitution is 16.9/16.9 kcal/mol for trans-Pt-chloroaqua → trans-/cis-Pt–guanine monoadduct, 18.7/18.7 kcal/mol for trans-Pt-chloroaqua → trans-/cis-Pt–adenine monoadduct. Barriers of 20.2/20.2 kcal/mol are evaluated for trans-Pt-diaqua → trans-/cis-Pt–guanine monoadduct, 26.0/26.0 kcal/mol for trans-Pt-diaqua → trans-/cis-Pt–adenine monoadduct. In the second substitution starting from trans-Pt–guanine monoadduct to trans-diadducts, the reaction barrier for (G–Pt–G) head-to-head formation is 22.2 kcal/mol, while 22.0 kcal/mol is evaluated for the head-to-tail configuration. Barriers for (A–Pt–G) head-to-head and head-to-tail formation are 25.7/28.9 kcal/mol, respectively. The observed preference for guanine is explained in terms of remarkable larger complexation energy for the initial reactant complex as well as the lower barrier height for the substitutions. In the competition reactions, cysteine residue stabilizes the transition state (ΔG aq/ZPE = 13.1 kcal/mol) for platination more efficiently than purine bases and other protein residues.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bancroft DP, Lepre CA, Lippard SJ (1990) J Am Chem Soc 112:6860. doi:10.1021/ja00175a020

    Article  CAS  Google Scholar 

  2. Sherman SE, Lippard SJ (1987) Chem Rev 87:1153. doi:10.1021/cr00081a013

    Article  CAS  Google Scholar 

  3. Eastman A (1986) Biochemistry 25:3912. doi:10.1021/bi00361a026

    Article  CAS  Google Scholar 

  4. Fichtinger-Schepman AMJ, van Oosterom AT, Lohman PHM, Berends F (1987) Cancer Res 47:3000

    CAS  Google Scholar 

  5. Lepre CA, Strothkamp KG, Lippard SJ (1987) Biochemistry 26:5651. doi:10.1021/bi00392a011

    Article  CAS  Google Scholar 

  6. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467. doi:10.1021/cr980421n

    Article  CAS  Google Scholar 

  7. Fichtinger-Schepman AMJ, van der Veer JL, den Hartog JHJ, Lohman PHM, Reedijk J (1985) Biochemistry 24:707. doi:10.1021/bi00324a025

    Article  CAS  Google Scholar 

  8. Wong E, Giandomenico CM (1999) Chem Rev 99:2451. doi:10.1021/cr980420v

    Article  CAS  Google Scholar 

  9. Kasparkova J, Marini V, Najajreh Y, Gibson D, Brabec V (2003) Biochemistry 42:6321. doi:10.1021/bi0342315

    Article  CAS  Google Scholar 

  10. Boudvillain M, Dalbies R, Aussourd C, Leng M (1995) Nucleic Acids Res 23:2381. doi:10.1093/nar/23.13.2381

    Article  CAS  Google Scholar 

  11. Ramos-Lima FJ, Vrána O, Quiroga AG, Navarro-Ranninger C, Halámiková A, Rybníčková H, Hejmalová L, Brabec V (2006) J Med Chem 49:2640. doi:10.1021/jm0602514

    Article  CAS  Google Scholar 

  12. Jawbry S, Freikman I, Najajreh Y, Perez JM, Gibson DJ (2005) Inorg Biochem 99:1983. doi:10.1016/j.jinorgbio.2005.06.011

    Article  CAS  Google Scholar 

  13. Farrell N, Kelland LR, Roberts JD, Beusichem MV (1992) Cancer Res 52:5065

    CAS  Google Scholar 

  14. Bulluss GH, Knott KM, Ma ESF, Aris SM, Alvarado E, Farrell N (2006) Inorg Chem 45:5733. doi:10.1021/ic060741m

    Article  CAS  Google Scholar 

  15. McGowan G, Parsons S, Sadler PJ (2005) Inorg Chem 44:7459. doi:10.1021/ic050763t

    Article  CAS  Google Scholar 

  16. Martínez A, Lorenzo J, Prieto MJ, Font-Bardia M, Solans X, Avilés FX, Moreno V (2007) Bioorg Med Chem 15:969. doi:10.1016/j.bmc.2006.10.031

    Article  Google Scholar 

  17. Anzellotti A, Stefan S, Gibson D, Farrell N (2006) Inorg Chim Acta 359:3014. doi:10.1016/j.ica.2005.12.060

    Article  CAS  Google Scholar 

  18. Horvath G, Premkumar T, Boztas A, Lee E, Jon S, Geckeler KE (2008) Mol Pharm 5:358. doi:10.1021/mp700144t

    Article  CAS  Google Scholar 

  19. Montero EI, Diaz S, Gonzalez-Vadillo AM, Perez JM, Alonso C, Navarro-Ranninger C (1999) J Med Chem 42:4264. doi:10.1021/jm991015e

    Article  CAS  Google Scholar 

  20. Murray M, Cunningam J, Parada L, Dantry F, Labowitz P, Weinberg R (1983) Cell 33:749. doi:10.1016/0092-8674(83)90017-X

    Article  CAS  Google Scholar 

  21. Pèrez JM, Montero EI, Solans X, Font-Bardia M, Fuertes MA, Alonso C, Navarro-Ranninger C (2000) J Med Chem 43:2411. doi:10.1021/jm000925p

    Article  Google Scholar 

  22. Beusichem MV, Farrell N (1992) Inorg Chem 31:634. doi:10.1021/ic00030a021

    Article  Google Scholar 

  23. Quiroga AG, Pérez JM, Alonso C, Navarro-Ranninger C, Farrell N (2006) J Med Chem 49:224. doi:10.1021/jm050804v

    Article  CAS  Google Scholar 

  24. Zou Y, Houten BV, Farrell N (1993) Biochemistry 32:9632. doi:10.1021/bi00088a015

    Article  CAS  Google Scholar 

  25. Gao Y, Zhou LX (2008) Chin J Chem Phys 21:346

    Article  CAS  Google Scholar 

  26. Davies MS, Berners-Price SJ, Hambley TW (2000) Inorg Chem 39:5603. doi:10.1021/ic000847w

    Article  CAS  Google Scholar 

  27. Legendre F, Bas V, Kozelka J, Chottard JC (2000) Chem Eur J 6:2002. doi:10.1002/1521-3765(20000602)6:11<2002::AID-CHEM2002>3.0.CO;2-H

    Article  CAS  Google Scholar 

  28. Zimmermann T, Zeizinger M, Burda JV (2005) J Inorg Biochem 99:2184. doi:10.1016/j.jinorgbio.2005.07.021

    Article  CAS  Google Scholar 

  29. Fojo T, Farrell N, Ortuzar W, Tanimura H, Weinstein J, Myers TG (2005) Crit Rev Oncol Hematol 53:25. doi:10.1016/j.critrevonc.2004.09.008

    Article  Google Scholar 

  30. Farrell N, Povirk LF, Dange Y, DeMasters G, Gupta MS, Kohlhagen G, Khan QA, Pommier Y, Gewirtz DA (2004) Biochem Pharmacol 68:857. doi:10.1016/j.bcp.2004.05.023

    Article  CAS  Google Scholar 

  31. Hohenberg P, Kohn W (1964) Phys Rev B136:864. doi:10.1103/PhysRev.136.B864

    Article  Google Scholar 

  32. Becke AD (1993) J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785. doi:10.1103/PhysRevB.37.785

    Google Scholar 

  34. Hay PJ, Wadt WR (1985) J Chem Phys 82:270. doi:10.1063/1.448799

    Article  CAS  Google Scholar 

  35. Wadt WR, Hay PJ (1985) J Chem Phys 82:284. doi:10.1063/1.448800

    Article  CAS  Google Scholar 

  36. Hay PJ, Wadt WR (1985) J Chem Phys 82:299. doi:10.1063/1.448975

    Article  CAS  Google Scholar 

  37. Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939. doi:10.1021/ja00523a008

    Article  CAS  Google Scholar 

  38. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257. doi:10.1063/1.1677527

    Article  CAS  Google Scholar 

  39. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154. doi:10.1063/1.456010

    Article  CAS  Google Scholar 

  40. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523. doi:10.1021/j100377a021

    Article  CAS  Google Scholar 

  41. McLean AD, Chandler GS (1980) J Chem Phys 72:5639. doi:10.1063/1.438980

    Article  CAS  Google Scholar 

  42. Kirkwood JG (1934) J Chem Phys 2:351. doi:10.1063/1.1749489

    Article  CAS  Google Scholar 

  43. Wong MW, Frish MJ, Wiberg KB (1991) J Am Chem Soc 113:4776. doi:10.1021/ja00013a010

    Article  CAS  Google Scholar 

  44. Wong MW, Wiberg KB, Frish MJ (1992) J Am Chem Soc 114:523. doi:10.1021/ja00028a019

    Article  CAS  Google Scholar 

  45. Wong MW, Wiberg KB, Frish MJ (1992) J Am Chem Soc 114:1645. doi:10.1021/ja00031a017

    Article  CAS  Google Scholar 

  46. Onsager L (1936) J Am Chem Soc 58:1486. doi:10.1021/ja01299a050

    Article  CAS  Google Scholar 

  47. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151. doi:10.1063/1.473558

    Article  CAS  Google Scholar 

  48. Mennucci B, Cancs E, Tomasi J (1997) J Phys Chem B 101:10506. doi:10.1021/jp971959k

    Article  CAS  Google Scholar 

  49. Tomasi J, Mennucci B, Cancs E (1999) J Mol Struct Theochem 464:211. doi:10.1016/S0166-1280(98)00553-3

    Article  CAS  Google Scholar 

  50. Boys SF, Bernardi F (1970) Mol Phys 19:553. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  51. Simon J, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024. doi:10.1063/1.472902

    Article  CAS  Google Scholar 

  52. Gaussian 03, revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford CT

  53. Reedijk J (2003) Proc Natl Acad Sci USA 100:3611. doi:10.1073/pnas.0737293100

    Article  CAS  Google Scholar 

  54. Chval Z, Šip M (2003) Collect Czech Chem Commun 68:1105. doi:10.1135/cccc20031105

    Article  CAS  Google Scholar 

  55. Reedijk J (1992) Inorg Chim Acta 200:873. doi:10.1016/S0020-1693(00)92433-2

    Article  Google Scholar 

  56. Baik MH, Friesner RA, Lippard SJ (2003) J Am Chem Soc 125:14082. doi:10.1021/ja036960d

    Article  CAS  Google Scholar 

  57. Raber JR, Zhu CB, Eriksson LA (2005) J Phys Chem B 109:11006. doi:10.1021/jp050057d

    Article  CAS  Google Scholar 

  58. Clarke MJ, Sadler PJ (1999) In: Natile G, Coluccia M (eds) Topics in biological inorganic chemistry, metallopharmaceuticals. Springer, Berlin, p 73

  59. Teuben JM, Reedijk J (2000) J Biol Inorg Chem 5:463

    CAS  Google Scholar 

  60. Hahn M, Kleine M, Sheldrick WS (2001) J Biol Inorg Chem 6:556. doi:10.1007/s007750100232

    Article  CAS  Google Scholar 

  61. Fakih S, Munk VP, Shipman MA, Murdoch PD, Parkinson JA, Sadler PJ (2003) Eur J Inorg Chem 1206. doi:10.1002/ejic.200390156

  62. Murdoch PD, Kratchowil NA, Parkinson JA, Patriarca M, Sadler PJ (1999) Angew Chem Int Ed 38:2949. doi:10.1002/(SICI)1521-3773(19991004)38:19<2949::AID-ANIE2949>3.0.CO;2-Q

    Article  Google Scholar 

  63. Marchán V, Moreno V, Pedroso E, Grandas A (2001) Chem Eur J 7:808. doi:10.1002/1521-3765(20010216)7:4<808::AID-CHEM808>3.0.CO;2-6

    Article  Google Scholar 

  64. Bierbach U, Farrell N (1998) J Biol Inorg Chem 3:570. doi:10.1007/s007750050270

    Article  CAS  Google Scholar 

  65. Kasparkova J, Novakova O, Farrell N, Brabec V (2003) Biochemistry 42:792. doi:10.1021/bi026614t

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2357 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Zhou, L. DNA bindings of a novel anticancer drug, trans-[PtCl2(isopropylamine)(3-picoline)], and kinetic competition of purine bases with protein residues in the bifunctional substitutions: a theoretical DFT study. Theor Chem Acc 123, 455–468 (2009). https://doi.org/10.1007/s00214-009-0557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0557-5

Keywords

Navigation