Skip to main content
Log in

Estimating the thermodynamics and kinetics of chlorinated hydrocarbon degradation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Many different degradation reactions of chlorinated hydrocarbons are possible in natural groundwaters. In order to identify which degradation reactions are important, a large number of possible reaction pathways must be sorted out. Recent advances in ab initio electronic structure methods have the potential to help identify relevant environmental degradation reactions by characterizing the thermodynamic properties of all relevant contaminant species and intermediates for which experimental data are usually not available, as well as provide activation energies for relevant pathways. In this paper, strategies based on ab initio electronic structure methods for estimating thermochemical and kinetic properties of reactions with chlorinated hydrocarbons are presented. Particular emphasis is placed on strategies that are computationally fast and can be used for large organochlorine compounds such as 4,4′-DDT

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pankow JF, Luo WT, Bender DA, Isabelle LM, Hollingsworth JS, Chen C, Asher WE, Zogorski JS (2003). Atmos Environ 37:5023

    Article  CAS  Google Scholar 

  2. Pankow JF, Cherry JA (1996). Dense chlorinated solvents and other DNAPLs in groundwater: history, behavior, and remediation. Waterloo Press, Portland

    Google Scholar 

  3. Mackay DM, Cherry JA (1989). Environ Sci Technol 23:630

    Article  CAS  Google Scholar 

  4. Innovative Treatment & Remediation Demonstration (ITRD). Program (2002). Hanford 200 west area carbon tetrachloride project innovative remediation technology review 1999–2000, Sandi National Laboratories

  5. Vogel TM, Criddle CS, McCarty PL (1987). Environ Sci Technol 21:722

    Article  CAS  Google Scholar 

  6. Schwarzenbach RP, Gschwend PM, Imboden DM (1993). Environmental organic chemistry. Wiley, New York

    Google Scholar 

  7. Balko BA, Tratnyek PG (1998). J Phys Chem B 102:1459

    Article  CAS  Google Scholar 

  8. Amonette JE, Workman DJ, Kenedy DW, Fruchter JS, Gorby YA (2000). Environ Sci Technol 34:4606

    Article  CAS  Google Scholar 

  9. Wade RS, Castro CE (1973). J Am Chem Soc 95:226

    Article  PubMed  CAS  Google Scholar 

  10. Criddle CS, McCarty PL (1991). Environ Sci Technol 25:973

    Article  CAS  Google Scholar 

  11. Curtiss GP, Reinhard M (1994). Environ Sci Technol 28:2393

    Google Scholar 

  12. Kriegman-King MR, Renhard M (1992). Environ Sci Technol 26:2198

    Article  CAS  Google Scholar 

  13. Gaspar D, Lea A, Engelhard M, Baer D, Miehr R, Tratnyek P (2002). Langmuir 18:7688

    Article  CAS  Google Scholar 

  14. Fennelly J, Roberts A (1998). Environ Sci Technol 32:1980

    Article  CAS  Google Scholar 

  15. Matheson LJ, Tratnyek PG (1994). Environ Sci Technol 28:2045

    CAS  Google Scholar 

  16. Butler EC, Hayes KF (2000). Environ Sci Technol 34:422

    Article  CAS  Google Scholar 

  17. Li T, Farrell J (2001). Environ Sci Technol 35:3560

    Article  PubMed  CAS  Google Scholar 

  18. Stromeyer SA, Stumpf K, Cook AM, Leisenger T (1992). Biodegradation 3:113

    Article  CAS  Google Scholar 

  19. Wolfe NL, Zepp RG, Paris DF, Baughman GL, Hollis RC (1977). Environ Sci Technol 11:1077

    Article  CAS  Google Scholar 

  20. Bylaska EJ, Dixon DA, Felmy AR (2000). J Phys Chem A 104:610

    Article  CAS  Google Scholar 

  21. Borisov YA, Arcia EE, Mielke SL, Garrett BC, Dunning JTH (2001). J Phys Chem A 105:7724

    Article  CAS  Google Scholar 

  22. Bylaska EJ, Dixon DA, Felmy AR, Apra E, Windus TL, Zhan CG, Tratnyek PG (2004). J Phys Chem A 108:5883

    Article  CAS  Google Scholar 

  23. Bylaska EJ, Dixon DA, Felmy AR, Tratnyek PG (2002). J Phys Chem A 106:11581

    Article  CAS  Google Scholar 

  24. Bylaska EJ, Dupuis M, Tratnyek PG (2005). J Phys Chem A 109:5905

    Article  CAS  Google Scholar 

  25. Arnold WA, Wignet P, Cramer CJ (2002). Environ Sci Technol 36:3536

    Article  PubMed  CAS  Google Scholar 

  26. Nonnenberg C, van der Donk WA, Zipzse H (2002). Phys Rev A 106:8708

    CAS  Google Scholar 

  27. Patterson EV, Cramer CJ, Truhlar DG (2001). J Am Chem Soc 123:2025

    Article  PubMed  CAS  Google Scholar 

  28. Winget P, Cramer C, Truhlar D (2004). Theor Chem Acc 112:217

    Article  CAS  Google Scholar 

  29. Perlinger JA, Venkatapathy R, Harrison JF (2000). J Phys Chem A 104:2752

    Article  CAS  Google Scholar 

  30. Feller D, Peterson K, de Jong W, Dixon D (2003). J Chem Phys 118:3510

    Article  CAS  Google Scholar 

  31. Soriano A, Silla E, Tunon I (2002). J Chem Phys 116:6102

    Article  CAS  Google Scholar 

  32. Bertran J, Gallardo I, Moreno M, Saveant JM (1992). J Am Chem Soc 114:9576

    Article  CAS  Google Scholar 

  33. Tada T, Yoshimura R (1992). J Am Chem Soc 114:1593

    Article  CAS  Google Scholar 

  34. Pause L, Robert M, Saveant J (2000). J Am Chem Soc 122:9829

    Article  CAS  Google Scholar 

  35. Sun H, Bozzelli JW (2001). J Phys Chem A 105:4504

    Article  CAS  Google Scholar 

  36. Booty MR, Bozzelli JW, Ho WP, Magee RS (1995). Environ Sci Technol 29:3059

    CAS  Google Scholar 

  37. Chen C, Wong D, Bozzelli J (1998). J Phys Chem A 102:4551

    Article  CAS  Google Scholar 

  38. Sun H, Bozzelli J (2003). J Phys Chem A 107:1018

    Article  CAS  Google Scholar 

  39. Bartlett RJ (1989). J Phys Chem 93:1697

    Article  CAS  Google Scholar 

  40. Bartlett RJ, Stanton JF (1995). In: Lipkowitz KB, Boyd DB (ed). Reviews of computational chemistry, VCH Publishers, New York

  41. Kucharski SA, Bartlett RJ (1986). J Adv Quantum Chem 18:281

    CAS  Google Scholar 

  42. Dixon DA, Feller D, Peterson KA (1997). J Phys Chem A 101:9405

    Article  CAS  Google Scholar 

  43. Peterson K, Xantheas S, Dixon D, Dunning T (1998). J Phys Chem A 102:2449

    Article  CAS  Google Scholar 

  44. Kumaran S, Su M, Lim K, Michael J, Klippenstein S, DiFelice J, Mudipalli P, Kiefer J, Dixon D, Peterson K (1997). J Phys Chem A 101:8653

    Article  CAS  Google Scholar 

  45. Dixon DA, Peterson KA, Francisco JS (2000). J Phys Chem A 104:6227

    Article  CAS  Google Scholar 

  46. Dixon D, Feller D, Peterson K (2001). J Chem Phys 115:2576

    Article  CAS  Google Scholar 

  47. Dixon D, Peterson K (2001). J Chem Phys 115:6327

    Article  CAS  Google Scholar 

  48. Hohenberg P, Kohn W (1964). Phys Rev B 136:864

    Article  Google Scholar 

  49. Kohn W, Sham LJ (1965). Phys Rev A140:1133

    Article  Google Scholar 

  50. Vosko SH, Wilk L, Nusair M (1980). Can J Phys 58:1200

    Article  CAS  Google Scholar 

  51. Becke AD (1988). Phys Rev A 38:3098

    Article  PubMed  CAS  Google Scholar 

  52. Perdew JP, Wang Y (1992). Phys Rev B 45:13244

    Article  Google Scholar 

  53. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    Article  PubMed  CAS  Google Scholar 

  54. Adamo C, Barone V (1997). J Chem Phys 110:6158

    Article  Google Scholar 

  55. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  56. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785

    Article  CAS  Google Scholar 

  57. Benson SW (1968). Thermochemical kinetics; methods for the estimation of thermochemical data and rate parameters. Wiley, New York

    Google Scholar 

  58. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997). J Chem Phys 106:1063

    Article  CAS  Google Scholar 

  59. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991). J Chem Phys 94:7221

    Article  CAS  Google Scholar 

  60. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998). J Chem Phys 109:7764

    Article  CAS  Google Scholar 

  61. Chase JMW (1998). Phys Chem Ref Data, Monograph No 9 9:1

    Google Scholar 

  62. Herzberg G (1947). Molecular spectra and molecular structure II Infared and raman spectra of polyatomic molecules. D. Van Nostrand Company, New York

    Google Scholar 

  63. McQuarrie DA (1973). Statistical mechanics. Harper & Row, New York

    Google Scholar 

  64. Straatsma TP, Apra E, Windus TL, Dupuis M, Bylaska EJ, de Jong W, Hirata S, Smith DMA, Hackler MT, Pollack L, Harrison RJ, Nieplocha J, Tipparaju V, Krishnan M, Brown E, Cisneros G, Fann GI, Fruchtl H, Garza J, Hirao K, Kendall R, Nichols JA, Tsemekhman K, Valiev M, Wolinski K, Anchell J, Bernholdt D, Borowski P, Clark T, Clerc D, Dachsel H, Deegan M, Dyall K, Elwood D, Glendening E, Gutowski M, Hess A, Jaffe J, Johnson B, Ju J, R. Kobayashi R, Kutteh R, Lin Z, Littlefield R, Long X, Meng B, Nakajima T, Niu S, Rosing M, Sandrone G, Stave M, Taylor H, Thomas G, van Lenthe J, Wong A, Zhang Z (2003). NWChem, A computational chemistry package for parallel computers. Pacific Northwest National Laboratory, Richland, Washington 99352–0999, USA

  65. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Chesesman JR, Zakrzewski VG, Montgomery J, J. A., Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, A. PG, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, T. K, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998). Gaussian 98, Revision A.4, Gaussian, Pittsburgh, PA

  66. Pitzer KS, Gwinn WD (1942). J Chem Phys 10:428

    Article  CAS  Google Scholar 

  67. Zhu L, Bozzelli J, Lay T (1998). Ind Eng Chem Res 37:3497

    Article  CAS  Google Scholar 

  68. McQuarrie DA (1983). Quantum chemistry. University Science Books, Sausalito, CA

    Google Scholar 

  69. Schokhirev NR, Program ROTATOR (http://www.chem.arizona.edu/faculty/nikolai/programs.html#programs).

  70. Cossi M, Barone V, Cammi R, Tomasi J (1996). Chem Phys Lett 255:327

    Article  CAS  Google Scholar 

  71. Floris FM, Tomasi J, Pascual Ahuir JL (1991). J Comput Chem 12:784

    Article  CAS  Google Scholar 

  72. Miertus S, Scrocco E, Tomasi J (1981). J Chem Phys 55:117

    Article  CAS  Google Scholar 

  73. Tomasi J, Persico M (1994). Chem Rev 94:2027

    Article  CAS  Google Scholar 

  74. Klamt A, Schuurmann G (1993). J Chem Soc Perkin Trans 2:799

    Google Scholar 

  75. Cramer CJ, Truhlar DG (1999). Chem Rev 99:2161

    Article  PubMed  CAS  Google Scholar 

  76. Orozco M, Alhambra C, Barril X, Lopez JM, Busquest MA, Luque FJ (1996). J Mol Model 2:1

    Article  Google Scholar 

  77. Cramer CJ, Truhlar DG (1992). Science 256:213

    CAS  Google Scholar 

  78. Cramer CJ, Truhlar DG (1995). Continuum solvation models: classical and quantum mechanical implementations. In: Lipkowitz KB, Boyd DB (eds). Reviews in Computational Chemistry 6. VCH, New York, pp. 1

    Google Scholar 

  79. Cramer CJ, Truhlar DG (1996). Continuum solvation models. In: Tapia O, Bertran J (eds). Solvent effects and chemical reactivity. Kluwer, Dordrecht, p 1

    Google Scholar 

  80. Pierotti RA (1965). J Phys Chem 69:281

    CAS  Google Scholar 

  81. Huron MJ, and P. Claverie (1974). J Phys Chem 78:1853

    Article  CAS  Google Scholar 

  82. Honig B, Sharp KA, Yang A (1993). J Phys Chem 97:1101

    Article  CAS  Google Scholar 

  83. Sitkoff D, Sharp KA, Honig B (1994). J Phys Chem 98:1978

    Article  CAS  Google Scholar 

  84. Eckert F, Klamt A (2002). AIChE J 48:369

    Article  CAS  Google Scholar 

  85. Ben-Naim A, Marcus YJ (1984). J Chem Phys 81:2016

    Article  CAS  Google Scholar 

  86. Winget P, Weber E, Cramer C, Truhlar D (2000). Phys Chem Chem Phys 2:1871

    Article  CAS  Google Scholar 

  87. Levine IN (1988). Physical chemistry. McGraw-Hill, New York

    Google Scholar 

  88. Wagman DD (1982). J Phys Chem Ref Data 11:suppl 2

    Google Scholar 

  89. Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR Jr. (1998). J Phys Chem A 102:7787

    Article  CAS  Google Scholar 

  90. Zhan C-G, Dixon DA (2003). J Phys Chem B 107:4403

    Article  CAS  Google Scholar 

  91. Costentin C, Robert M, Saveant JM (2003). J Am Chem Soc 125:10729

    Article  PubMed  CAS  Google Scholar 

  92. Pause L, Robert M, Saveant J (2001). J Am Chem Soc 123:4886

    Article  PubMed  CAS  Google Scholar 

  93. Saveant JM (1987). J Am Chem Soc 109:6788

    Article  CAS  Google Scholar 

  94. Eberson L (1999). Acta Chem Scand 53:751

    Article  CAS  Google Scholar 

  95. Piecuch P (1997). J Mol Struct 436–437:503

    Article  Google Scholar 

  96. Roszak S, Koski W, Kaufman J, Balasubramanian K (1997). J Chem Phys 106:7709

    Article  CAS  Google Scholar 

  97. Hotokka M, Roos BO, Eberson L (1986). J Chem Soc Perk T 2: 1979

    Article  Google Scholar 

  98. Perez V, Lluch JM, Bertran J (1994). J Am Chem Soc 116:10117

    Article  CAS  Google Scholar 

  99. Luke BT, Loew GH, McLean AD (1988). J Am Chem Soc 110:3396

    Article  CAS  Google Scholar 

  100. Griffing KM, Kenney J, Simons J, Jordan KD (1975). J Chem Phys 63:4073

    Article  CAS  Google Scholar 

  101. Bondybey V, Schaefer HF, Pearson PK (1972). J Chem Phys 57:1123

    Article  CAS  Google Scholar 

  102. Michels HH, Harris FE, Browne JC (1968). J Chem Phys 48: 2821

    Article  CAS  Google Scholar 

  103. Zhang N, Blowers P, Farrell J (2005). Environ Sci Technol 39: 612

    Article  PubMed  CAS  Google Scholar 

  104. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992). Can J Chem 70:560

    CAS  Google Scholar 

  105. Dunning TH Jr (1989). J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  106. Kendall RA, Dunning TH, Jr, Harrison RJ (1992). J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  107. Peterson KA, Kendall RA, Dunning TH Jr (1993). J Chem Phys 99:1930

    Article  CAS  Google Scholar 

  108. Peterson KA, Kendall RA, Dunning TH Jr (1993). J Chem Phys 99:9790

    Article  CAS  Google Scholar 

  109. Woon DE, Dunning JTH (1993). J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  110. Woon DE, Dunning JTH (1995). J Chem Phys 103:4572

    Article  CAS  Google Scholar 

  111. Barone V, Cossi M, Tomasi J (1997). J Chem Phys 107:3210

    Article  CAS  Google Scholar 

  112. Chase Jr MW (1998). Phys Chem Ref Data, Monograph No 9 9:1

    Google Scholar 

  113. Hemmaplardh B, King JAD (1972). J Phys Chem 76:2170

    Article  CAS  Google Scholar 

  114. Strauding J, Roberts PV (1996). Crit Rev Environ Sci Technol 26:205

    Article  Google Scholar 

  115. Yaws CL, Yang H-C (1992). Henry’s law constant for compounds in water. In: Yaws CL (eds). Thermodynamic and physical property data. Gulf Publishing Company, Houston, TX, p 181

    Google Scholar 

  116. Munz C, Roberts PV (1986). Environ Sci Technol 20:830

    Article  CAS  Google Scholar 

  117. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV (1983). J Comput Chem 4:294

    Article  CAS  Google Scholar 

  118. Krishnan R, Binkley JS, Seeger R, Pople JA (1980). J Chem Phys 72:650

    Article  CAS  Google Scholar 

  119. Coe JV (2001). Int Rev Phys Chem 20:33

    Article  CAS  Google Scholar 

  120. Shiraishi H, Sunaryo GR, Ishigure K (1994). J Phys Chem 98:5164

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Bylaska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bylaska, E.J. Estimating the thermodynamics and kinetics of chlorinated hydrocarbon degradation. Theor Chem Acc 116, 281–296 (2006). https://doi.org/10.1007/s00214-005-0042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0042-8

Keywords

Navigation