Skip to main content
Log in

Anti-inflammatory and antinociceptive activities of glucagon-like peptides: evaluation of their actions on serotonergic, nitrergic, and opioidergic systems

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are gut derived hormones. GLP-1 and GLP-2 were shown to have pleiotropic effects in intestinal and pancreatic diseases.

Objective

We aimed to investigate the activities of GLP-1 and GLP-2 on nociception and inflammation in mice, involving their actions on serotonergic, nitrergic, and opioidergic systems.

Methods

Antinociceptive and anti-inflammatory activities of intraperitoneally injected GLPs were evaluated in hotplate latency test, formalin-induced behavioral, and paw edema tests. Ondansetron, a selective 5-HT3 receptor antagonist; L-NAME, a NOS inhibitor; and naloxone, an opioid antagonist were injected to determine the mechanisms of antinociception and anti-inflammation. We also measured blood glucose levels and performed rotarod test in order to evaluate whether the hypoglycemic effect of GLP compounds or alterations in locomotor activity may affect the latency in hotplate test and activity in formalin test.

Results

GLP-1 (0.2 mg/kg) and GLP-2 (0.05, 0.2 mg/kg) significantly increased pain threshold. GLP-1 (0.2 mg/kg) and GLP-2 (0.05, 0.1, 0.2 mg/kg) significantly decreased formalin-induced licking and shaking behaviors. GLP-1 or GLP-2 showed no significant inhibitory action on formalin-induced swelling in paws of mice. Antinociceptive actions of GLP-1 and GLP-2 were significantly decreased with ondansetron and naloxone, and paw shaking behavior significantly increased with naloxone. GLP-1 and GLP-2 did not impair rotarod performance, and did not cause a significant hypoglycemic effect in our normoglycemic mice after rotarod test.

Conclusion

These finding indicated that the antinociceptive and anti-inflammatory effect of GLP-1 was related to opioidergic system. Antinociceptive effect of GLP-2 was partially related to 5-HT3 serotonergic or opioidergic system in hotplate test. However, the anti-inflammatory effect of GLP-2 was not directly related to 5-HT3, NO or opioids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adzu B, Amos S, Kapu SD, Gamaniel KS (2003) Anti-inflammatory and antinociceptive effects of Sphaeranthus senegalensis. J Ethnopharmacol 84(2–3):169–173

    Article  CAS  Google Scholar 

  • Austin K, Imam NA, Pintar JE, Brubaker PL (2015) IGF binding protein-4 is required for the growth effects of glucagon-like peptide-2 in murine intestine. Endocrinology 156(2):429–436

    Article  Google Scholar 

  • Avila-Rojas SH, Velázquez-Lagunas I, Salinas-Abarca AB, Barragán-Iglesias P, Pineda-Farias JB, Granados-Soto V (2015) Role of spinal 5-HT5A, and 5-HT1A/1B/1D, receptors in neuropathic pain induced by spinal nerve ligation in rats. Brain Res 1622:377–385

    Article  CAS  Google Scholar 

  • Baggio LL, Drucker DJ (2007) Biology of incretins: GLP -1 and GIP. Gastroenterology 132(6):2131–2157

    Article  CAS  Google Scholar 

  • Barrot M (2012) Tests and models of nociception and pain in rodents. Neuroscience 211:39–50. https://doi.org/10.1016/j.neuroscience.2011.12.041

    Article  CAS  PubMed  Google Scholar 

  • Brady LS, Holtzman SG (1982) Analgesic effects of intraventricular morphine and enkephalins in nondependent and morphine-dependent rats. J Pharmacol Exp Ther 222(1):190–197

    CAS  PubMed  Google Scholar 

  • Bulut K, Meier JJ, Ansorge N, Felderbauer P, Schmitz F, Hoffmann P, Schmidt WE, Gallwitz B (2004) Glucagon-like peptide 2 improves intestinal wound healing through induction of epithelial cell migration in vitro-evidence for a TGF--beta-mediated effect. Regul Pept 121(1–3):137–143

    Article  CAS  Google Scholar 

  • Bulut K, Pennartz C, Felderbauer P, Meier JJ, Banasch M, Bulut D, Schmitz F, Schmidt WE, Hoffmann P (2008) Glucagon like peptide-2 induces intestinal restitution through VEGF release from subepithelial myofibroblasts. Eur J Pharmacol 578(2–3):279–285

    Article  CAS  Google Scholar 

  • Fan H, Gong N, Li TF, Ma AN, Wu XY, Wang MW, Wang YX (2015) The non-peptide GLP-1 receptor agonist WB4-24 blocks inflammatory nociception by stimulating β-endorphin release from spinal microglia. Br J Pharmacol 172(1):64–79

    Article  CAS  Google Scholar 

  • Gong N, Xiao Q, Zhu B, Zhang CY, Wang YC, Fan H, Ma AN, Wang YX (2014) Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity. J Neurosci 34(15):5322–5334. https://doi.org/10.1523/JNEUROSCI.4703-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajhashemi V, Sajjadi SE, Heshmati M (2009) Anti-inflammatory and analgesic properties of Heracleum persicum essential oil and hydroalcoholic extract in animal models. J Ethnopharmacol 124(3):475–480

    Article  CAS  Google Scholar 

  • Insuela DBR, Carvalho VF (2017) Glucagon and glucagon-like peptide-1 as novel anti-inflammatory and immunomodulatory compounds. Eur J Pharmacol 812:64–72. https://doi.org/10.1016/j.ejphar.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  • Ismail NI, Ming-Tatt L, Lajis N, Akhtar MN, Akira A, Perimal EK, Israf DA, Sulaiman MR (2016) Antinociceptive effect of 3-(2,3-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one in mice models of induced nociception. Molecules 21(8). doi: https://doi.org/10.3390/molecules21081077

  • Iwai T, Hayashi Y, Narita S, Kasuya Y, Jin K, Tsugane M, Oka J (2009) Antidepressant-like effects of glucagon-like peptide-2 in mice occur via monoamine pathways. Behav Brain Res 204(1):235–240

    Article  CAS  Google Scholar 

  • Kagal UA, Angadi NB, Matule SM (2017) Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: an experimental study. Int J Appl Basic Med Res 7(1):26–31

    Article  CAS  Google Scholar 

  • Kawabata A, Manabe S, Manabe Y, Takagi H (1994) Effect of topical injection of L-arginine on formalin-induced nosiception in the mouse: a dual role of peripherally formed NO in pain modulation. Br J Pharmacol 112(2):547–550

    Article  CAS  Google Scholar 

  • Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A (2007) An ion channel essential for sensing chemical damage. J Neurosci 27:11412–11415

    Article  CAS  Google Scholar 

  • Miranda A, Peles S, McLean PG, Sengupta JN (2006) Effects of the 5-HT3 receptor antagonist, alosetron, in a rat model of somatic and visceral hyperalgesia. Pain 126(1–3):54–63

    Article  CAS  Google Scholar 

  • Nerup N, Ambrus R, Lindhe J, Achiam MP, Jeppesen PB, Svendsen LB (2017) The effect of glucagon-like peptide-1 and glucagon-like peptide-2 on microcirculation: a systematic review. Microcirculation. https://doi.org/10.1111/micc.12367

  • Palleria C, Leo A, Andreozzi F, Citraro R, Iannone M, Spiga R, Sesti G, Constanti A, De Sarro G, Arturi F, Russo E (2017) Liraglutide prevents cognitive decline in a rat model of streptozotocin-induced diabetes independently from its peripheral metabolic effects. Behav Brain Res 321:157–169. https://doi.org/10.1016/j.bbr.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  • Shajib MS, Baranov A, Khan WI (2017) Diverse effects of gut-derived serotonin in intestinal inflammation. ACS Chem Neurosci 8(5):920–931

    Article  CAS  Google Scholar 

  • Shibata M, Ohkubo T, Takahashi H, Inoki R (1989) Modified formalin test: characteristic biphasic pain response. Pain 38(3):347–352

    Article  CAS  Google Scholar 

  • Sigalet DL, Wallace LE, Holst JJ, Martin GR, Kaji T, Tanaka H, Sharkey KA (2007) Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2. Am J Physiol Gastrointest Liver Physiol 293(1):G211–G221

    Article  CAS  Google Scholar 

  • Sommer C (2006) Is serotonin hyperalgesic or analgesic? Curr Pain Headache Rep 10(2):101–106 Review

    Article  Google Scholar 

  • Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an evaluation of the method. Pain 51(1):5–17

    Article  Google Scholar 

  • Trefts E, Williams AS, Wasserman DH (2015) Exercise and the regulation of hepatic metabolism. Prog Mol Biol Transl Sci 135:203–225. https://doi.org/10.1016/bs.pmbts.2015.07.010 Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported financially by the Karadeniz Technical University Scientific Research Projects, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygun Altıntaş Aykan.

Ethics declarations

The study was carried out at Karadeniz Technical University Medical Faculty, Medical Pharmacology Department. Local ethics committee approved the study (Ethics Committee File No: 2015/44, Approval date: 15/12/2015).

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aykan, D.A., Kesim, M., Ayan, B. et al. Anti-inflammatory and antinociceptive activities of glucagon-like peptides: evaluation of their actions on serotonergic, nitrergic, and opioidergic systems. Psychopharmacology 236, 1717–1728 (2019). https://doi.org/10.1007/s00213-018-5154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5154-7

Keywords

Navigation