Skip to main content

Advertisement

Log in

Pterostilbene, an active component of the dragon’s blood extract, acts as an antidepressant in adult rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Hippocampal neurogenesis has been widely considered as one of the potential biological mechanisms for the treatment of depression caused by chronic stress. Many natural products have been reported to be beneficial for neurogenesis.

Objectives

The present study is designed to investigate the effect of dragon’s blood extract (DBE) and its biologically active compound, pterostilbene (PTE), on hippocampal neurogenesis.

Methods

The male Sprague-Dawley (SD) rats were used in this study, which were maintained on the normal, DBE and PTE diet groups for 4 weeks before dissection in the normal rat model and behavioral testing in the CUS depression rat model. Meanwhile, DMI-treated rats are subcutaneously injected with DMI (10 mg/kg, i.p.).

Results

Results revealed that DBE and PTE have the ability to promote hippocampal neurogenesis. DBE and PTE also promoted the proliferation of neural stem cells isolated from the brain of suckling rats. Oral administration of DBE and PTE induced the proliferation, migration, and differentiation of neural progenitor cells (NPCs) in chronic unexpected stressed (CUS) model rats, and improved the behavioral ability and alleviated depress-like symptoms of CUS rats. It was also observed that PTE treatment significantly induced the expression of neurogenesis-related factors, including BDNF, pERK, and pCREB.

Conclusion

Oral administration of PTE could affect neurogenesis and it is likely to be achieved via BDNF/ERK/CREB-associated signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM (2008) Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642–649

    Article  CAS  PubMed  Google Scholar 

  • An L, Zhang YZ, Yu NJ, Liu XM, Zhao N, Yuan L, Li YF (2008) Role for serotonin in the antidepressant-like effect of a flavonoid extract of Xiaobuxin-Tang. Pharmacol Biochem Behav 89:572–580

    Article  CAS  PubMed  Google Scholar 

  • Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64:863–870

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell S, Marriott M, Nahmias C, MacQueen GM (2004) Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161:598–607

    Article  PubMed  Google Scholar 

  • Chen ZP, Cai Y, Phillipson JD (1994) Studies on the anti-tumour, anti-bacterial, and wound-healing properties of dragon’s blood. Planta Med 60:541–545

    Article  CAS  PubMed  Google Scholar 

  • David DJ, Klemenhagen KC, Holick KA, Saxe MD, Mendez I, Santarelli L, Craig DA, Zhong H, Swanson CJ, Hegde LG, Ping XI, Dong D, Marzabadi MR, Gerald CP, Hen R (2007) Efficacy of the MCHR1 antagonist N-[3-(1-{[4-(3,4-difluorophenoxy)phenyl]methyl}(4-piperidyl))-4-methylphenyl]-2-m ethylpropanamide (SNAP 94847) in mouse models of anxiety and depression following acute and chronic administration is independent of hippocampal neurogenesis. J Pharmacol Exp Ther 321:237–248

    Article  CAS  PubMed  Google Scholar 

  • Dias GP et al (2012) The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety. Oxidative Med Cell Longev 541971:2012

    Google Scholar 

  • Dranovsky A, Hen R (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 59:1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Eisch AJ, Petrik D (2012) Depression and hippocampal neurogenesis: a road to remission? Science 338:72–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS, Taylor JR (2008) Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry 63:353–359

    Article  CAS  PubMed  Google Scholar 

  • Gupta D, Gupta RK (2011) Bioprotective properties of dragon’s blood resin: in vitro evaluation of antioxidant activity and antimicrobial activity. BMC Complement Altern Med 11(13)

  • Hasan M, Teng Z, Iqbal J, Awan U, Meng S, Dai R, Qing H, Deng Y (2013) Assessment of bioreducing and stabilizing potential of dragon’s blood (Dracaena Cochinchinensis, Lour. S. C.Chen) resin extract in synthesis of silver nanoparticles. Nanosci Nanotechnol Lett 5(1–5):780–784

    Article  CAS  Google Scholar 

  • Hurley LL, Akinfiresoye L, Kalejaiye O, Tizabi Y (2014) Antidepressant effects of resveratrol in an animal model of depression. Behav Brain Res 268:1–7

    Article  CAS  PubMed  Google Scholar 

  • Jaewon C et al (2012) Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 33:2062–2071

    Article  CAS  Google Scholar 

  • Lacroix L, Broersen LM, Weiner I, Feldon J (1998) The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat. Neuroscience 84:431–442

    Article  CAS  PubMed  Google Scholar 

  • Lau BW et al (2012) Polysaccharides from wolfberry prevents corticosterone-induced inhibition of sexual behavior and increases neurogenesis. PLoS One 7:e33374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MM, Reif A, Schmitt AG (2013) Major depression: a role for hippocampal neurogenesis? Curr Top Behav Neurosci 14:153–179

    Article  PubMed  Google Scholar 

  • Liang JH, Yang L, Wu S, Liu SS, Cushman M, Tian J, Li NM, Yang QH, Zhang HA, Qiu YJ, Xiang L, Ma CX, Li XM, Qing H (2017) Discovery of efficient stimulators for adult hippocampal neurogenesis based on scaffolds in dragon’s blood. Eur J Med Chem 136:382–392

    Article  CAS  PubMed  Google Scholar 

  • Listowska M, Glac W, Grembecka B, Grzybowska M, Wrona D (2015) Changes in blood CD4+T and CD8+T lymphocytes in stressed rats pretreated chronically with desipramine are more pronounced after chronic open field stress challenge. J Neuroimmunol 282:54–62

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Huang S, Liu S, Feng XL, Yu M, Liu J, Sun YE, Chen G, Yu Y, Zhao J, Pei G (2015) A herbal medicine for Alzheimer’s disease and its active constituents promote neural progenitor proliferation. Aging Cell 14:784–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi S, Sakagami H, Yabuki Y, Sasaki Y, Izumi H, Zhang C, Han F, Fukunaga K (2015) Stimulation of sigma-1 receptor ameliorates depressive-like behaviors in CaMKIV null mice. Mol Neurobiol 52:1210–1222

    Article  CAS  PubMed  Google Scholar 

  • Prager I, Patties I, Himmelbach K, Kendzia E, Merz F, Müller K, Kortmann RD, Glasow A (2016) Dose-dependent short- and long-term effects of ionizing irradiation on neural stem cells in murine hippocampal tissue cultures: neuroprotective potential of resveratrol. Brain Behav 6:e00548

    Article  PubMed  PubMed Central  Google Scholar 

  • Ran Y, Wang R, Hasan M, Jia Q, Tang B, Shan S, Deng Y, Qing H (2014) Radioprotective effects of dragon’s blood and its extracts on radiation-induced myelosuppressive mice. J Ethnopharmacol 154:624–634

    Article  PubMed  Google Scholar 

  • Ran Y, Xu B, Wang R, Gao Q, Jia Q, Hasan M, Shan S, Ma H, Dai R, Deng Y, Qing H (2016) Dragon’s blood extracts reduce radiation-induced peripheral blood injury and protects human megakaryocyte cells from GM-CSF withdraw-induced apoptosis. Phys Med 32:84–93

    Article  PubMed  Google Scholar 

  • Redmond AM, Kelly JP, Leonard BE (1997) Behavioural and neurochemical effects of dizocilpine in the olfactory bulbectomized rat model of depression. Pharmacol Biochem Behav 58:355–359

    Article  CAS  PubMed  Google Scholar 

  • Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115

    Article  CAS  PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HD, Duman RS (2010) Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology 35:2378–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • See V, Boutillier AL, Bito H, Loeffler JP (2001) Calcium/calmodulin-dependent protein kinase type IV (CaMKIV) inhibits apoptosis induced by potassium deprivation in cerebellar granule neurons. FASEB J 15:134–144

    Article  CAS  PubMed  Google Scholar 

  • Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Ma L, Liao Z, le Q, Yu J, Liu X, Li H, Chen Y, Zheng P, Yang Z, Ma L (2015) Astroglial β-arrestin1-mediated nuclear signaling regulates the expansion of neural precursor cells in adult hippocampus. Sci Rep 5:15506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z (1991) A theoretical study on the biological origins of Chinese herbs. Zhongguo Zhong Yao Za Zhi 16:195–199, 253

    CAS  PubMed  Google Scholar 

  • Xin N, Li YJ, Li X, Wang X, Li Y, Zhang X, Dai RJ, Meng WW, Wang HL, Ma H, Schläppi M, Deng YL (2012) Dragon’s blood may have radioprotective effects in radiation-induced rat brain injury. Radiat Res 178:75–85

    Article  CAS  PubMed  Google Scholar 

  • Xin N, Yang FJ, Li Y, Li YJ, Dai RJ, Meng WW, Chen Y, Deng YL (2013) Dragon’s blood dropping pills have protective effects on focal cerebral ischemia rats model. Phytomedicine 21:68–74

    Article  PubMed  Google Scholar 

  • Xue R, Jin ZL, Chen HX, Yuan L, He XH, Zhang YP, Meng YG, Xu JP, Zheng JQ, Zhong BH, Li YF, Zhang YZ (2013) Antidepressant-like effects of 071031B, a novel serotonin and norepinephrine reuptake inhibitor. Eur Neuropsychopharmacol 23:728–741

    Article  CAS  PubMed  Google Scholar 

  • Yoo DY, Kim W, Yoo KY, Lee CH, Choi JH, Yoon YS, Kim DW, Won MH, Hwang IK (2011) Grape seed extract enhances neurogenesis in the hippocampal dentate gyrus in C57BL/6 mice. Phytother Res 25:668–674

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Song Y, Bao T, Yu M, Xu M, Guo Y, Wang Y, Zhang C, Zhao B (2016) Antidepressant-like effects of acupuncture involved the ERK signaling pathway in rats. BMC Complement Altern Med 16(380):380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Technology of the People’s Republic of China (No. 2013YQ03059514) and National Natural Science Foundation of China (NSFC 81671268, NSFC 81701260).

Author information

Authors and Affiliations

Authors

Contributions

YR, LY, QJ, HZ, YL, and YP performed the experiments; YR, LY, ZQ, and QY analyzed the data and prepared the draft; RW, HW, JL, and HN helped for data analyses; YD and HQ designed the experiments; ZQ and HQ approved the final version.

Corresponding authors

Correspondence to Yulin Deng or Hong Qing.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

(DOCX 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Ran, Y., Quan, Z. et al. Pterostilbene, an active component of the dragon’s blood extract, acts as an antidepressant in adult rats. Psychopharmacology 236, 1323–1333 (2019). https://doi.org/10.1007/s00213-018-5138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5138-7

Keywords

Navigation