Skip to main content
Log in

Caffeine increases the velocity of rapid eye movements in unfatigued humans

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Caffeine is a widely used dietary stimulant that can reverse the effects of fatigue on cognitive, motor and oculomotor function. However, few studies have examined the effect of caffeine on the oculomotor system when homeostasis has not been disrupted by physical fatigue. This study examined the influence of a moderate dose of caffeine on oculomotor control and visual perception in participants who were not fatigued.

Methods

Within a placebo-controlled crossover design, 13 healthy adults ingested caffeine (5 mg·kg−1 body mass) and were tested over 3 h. Eye movements, including saccades, smooth pursuit and optokinetic nystagmus, were measured using infrared oculography.

Results

Caffeine was associated with higher peak saccade velocities (472 ± 60° s−1) compared to placebo (455 ± 62° s−1). Quick phases of optokinetic nystagmus were also significantly faster with caffeine, whereas pursuit eye movements were unchanged. Non-oculomotor perceptual tasks (global motion and global orientation processing) were unaffected by caffeine.

Conclusions

These results show that oculomotor control is modulated by a moderate dose of caffeine in unfatigued humans. These effects are detectable in the kinematics of rapid eye movements, whereas pursuit eye movements and visual perception are unaffected. Oculomotor functions may be sensitive to changes in central catecholamines mediated via caffeine’s action as an adenosine antagonist, even when participants are not fatigued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addicott MA, Yang LL, Peiffer AM, Laurienti PJ (2009) Methodological considerations for the quantification of self-reported caffeine use. Psychopharmacology 203(3):571–578. doi:10.1007/s00213-008-1403-5

    Article  CAS  PubMed  Google Scholar 

  • Allman A-A, Ettinger U, Joober R, O’Driscoll GA (2012) Effects of methylphenidate on basic and higher-order oculomotor functions. J Psychopharmacol 26(11):1471–1479

    Article  PubMed  Google Scholar 

  • Amador N, Schlag-Rey M, Schlag J (1998) Primate antisaccades. I. Behavioral characteristics. J Neurophysiol 80(4):1775–1786

    CAS  PubMed  Google Scholar 

  • Bahill AT, Clark MR, Stark L (1975) The main sequence, a tool for studying human eye movements. Math Biosci 24(3):191–204

    Article  Google Scholar 

  • Bell AH, Everling S, Munoz DP (2000) Influence of stimulus eccentricity and direction on characteristics of pro- and antisaccades in non-human primates. J Neurophysiol 84(5):2595–2604

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125(1–2):279–284

    Article  CAS  PubMed  Google Scholar 

  • Busettini C, Frölich MA (2014) Effects of mild to moderate sedation on saccadic eye movements. Behav Brain Res 272:286–302. doi:10.1016/j.bbr.2014.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clavagnier S, Polito V, Hess R (2016) How independent are global form and global motion processings? J Vis 16(12):185–185. doi:10.1167/16.12.185

    Article  Google Scholar 

  • Cohen B (1972) Origin of quick phases of nystagmus. Prog Brain Res 37:544–545

    Article  CAS  PubMed  Google Scholar 

  • Connell CJW, Thompson B, Kuhn G, Claffey MP, Duncan S, Gant N (2016a) Fatigue related impairments in oculomotor control are prevented by caffeine. Scientific Reports 6:26614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connell CJW, Thompson B, Kuhn G, Gant N (2016b) Exercise-induced fatigue and caffeine supplementation affect psychomotor performance but not covert visuo-spatial attention. PLoS One 11(10):e0165318

    Article  PubMed  PubMed Central  Google Scholar 

  • Connell CJW, Thompson B, Turuwhenua J, Srzich A, Gant N (2017) Fatigue-related impairments in oculomotor control are prevented by norepinephrine-dopamine reuptake inhibition. Scientific Reports 7:42726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordery, P., Peirce, N., Maughan, R. J., & Watson, P. (2016). Dopamine/noradrenaline reuptake inhibition in women improves endurance exercise performance in the heat. Scandinavian Journal of Medicine and Science in Sports.

  • Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA (2003) Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 284(2):R399–R404

    CAS  PubMed  Google Scholar 

  • Einöther ST (2013) Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology 225(2):251–274. doi:10.1007/s00213-012-2917-4

    Article  PubMed  Google Scholar 

  • Ettinger U, Kumari V, Crawford TJ, Davis RE, Sharma T, Corr PJ (2003) Reliability of smooth pursuit, fixation, and saccadic eye movements. Psychophysiology 40(4):620–628

    Article  PubMed  Google Scholar 

  • Ferre S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105(4):1067–1079

    Article  CAS  PubMed  Google Scholar 

  • Fischer B, Gezeck S, Hartnegg K (1997) The analysis of saccadic eye movements from gap and overlap paradigms. Brain Res Protocol 2(1):47–52

    Article  CAS  Google Scholar 

  • Fisone G, Borgkvist A, Usiello A (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61(7–8):857–872

    Article  CAS  PubMed  Google Scholar 

  • Fredholm B, Bättig K, Holmén J, Nehlig A, Zvartau E (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51(1):83–133

    CAS  PubMed  Google Scholar 

  • Galley N (1989) Saccadic eye movement velocity as an indicator of (de) activation. A review and some speculations. J Psychophysiol 3(3):229–244

    Google Scholar 

  • Garbutt S, Harwood M, Harris C (2001) Comparison of the main sequence of reflexive saccades and the quick phases of optokinetic nystagmus. Br J Ophthalmol 85(12):1477–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodale MA (2011) Transforming vision into action. Vis Res 51(13):1567–1587

    Article  PubMed  Google Scholar 

  • Goodale MA, Milner D (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Hallett PE (1978) Primary and secondary saccades to goals defined by instructions. Vis Res 18(10):1279–1296. doi:10.1016/0042-6989(78)90218-3

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa H, Piacentini MF, Sarre S, Michotte Y, Ishiwata T, Meeusen R (2008) Influence of brain catecholamines on the development of fatigue in exercising rats in the heat. J Physiol 586(1):141–149

    Article  CAS  PubMed  Google Scholar 

  • Hogervorst E, Bandelow S, Schmitt J, Jentjens R, Oliveira M, Allgrove J et al (2008) Caffeine improves physical and cognitive performance during exhaustive exercise. Med Sci Sports Exerc 40(10):1841–1851. doi:10.1249/MSS.0b013e31817bb8b7

    Article  CAS  PubMed  Google Scholar 

  • Hutton SB (2008) Cognitive control of saccadic eye movements. Brain Cogn 68(3):327–340

    Article  CAS  PubMed  Google Scholar 

  • Hutton SB, Crawford TJ, Puri BK, Duncan LJ, Chapman M, Kennard C et al (1998) Smooth pursuit and saccadic abnormalities in first-episode schizophrenia. Psychol Med 28(3):685–692

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Reeves A (2009) Attentional release in the saccadic gap effect. Vis Res 49(16):2045–2055. doi:10.1016/j.visres.2009.02.015

    Article  PubMed  Google Scholar 

  • Kapoula Z, Yang Q, Vernet M, Bonfils P, Londero A (2010) Eye movement abnormalities in somatic tinnitus: fixation, smooth pursuit and optokinetic nystagmus. Auris Nasus Larynx 37(3):314–321. doi:10.1016/j.anl.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  • Keller E (1974) Participation of medial pontine reticular formation in eye movement generation in monkey. J Neurophysiol 37(2):316–332

    CAS  PubMed  Google Scholar 

  • Konen CS, Kleiser R, Seitz RJ, Bremmer F (2005) An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans. Exp Brain Res 165(2):203–216. doi:10.1007/s00221-005-2289-7

    Article  PubMed  Google Scholar 

  • Kovacs EM, Stegen J, Brouns F (1998) Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol 85(2):709–715

    CAS  PubMed  Google Scholar 

  • Leigh RJ, Zee DS (2006) The neurology of eye movements. Oxford University Press, Oxford

    Google Scholar 

  • Lencer R, Trillenberg P (2008) Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain Cogn 68(3):219–228

    Article  PubMed  Google Scholar 

  • Lopes JM, Aubier M, Jardim J, Aranda JV, Macklem PT (1983) Effect of caffeine on skeletal muscle function before and after fatigue. J Appl Physiol 54(5):1303–1305

    CAS  PubMed  Google Scholar 

  • Magkos F, Kavouras SA (2005) Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr 45(7–8):535–562

    Article  CAS  PubMed  Google Scholar 

  • McDowell JE, Dyckman KA, Austin BP, Clementz BA (2008) Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn 68(3):255–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Meeusen R, Sarre S, De Meirleir K, Ebinger G, Michotte Y (2003) The effects of running speed and running duration on extracellular dopamine levels in rat striatum, measured with microdialysis. Medicina Sportiva 7(1):E29–E36

    Google Scholar 

  • Nehlig A, Daval JL, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev 17(2):139–170

    Article  CAS  PubMed  Google Scholar 

  • Olk B, Kingstone A (2003) Why are antisaccades slower than prosaccades? A novel finding using a new paradigm. Neuroreport 14(1):151–155

    Article  PubMed  Google Scholar 

  • Prins, N., & Kingdom, F. A. A. (2009). Palamedes: Matlab routines for analyzing psychophysical data. Retrieved from http://www.palamedestoolbox.org

  • Roelands B, Watson P, Cordery P, Decoster S, Debaste E, Maughan R, Meeusen R (2012) A dopamine/noradrenaline reuptake inhibitor improves performance in the heat, but only at the maximum therapeutic dose. Scand J Med Sci Sports 22(5):e93–e98

    Article  CAS  PubMed  Google Scholar 

  • Rowland LM, Thomas ML, Thorne DR, Sing HC, Krichmar JL, Davis HQ et al (2005) Oculomotor responses during partial and total sleep deprivation. Aviat Space Environ Med 76(7):C104–C113

    PubMed  Google Scholar 

  • Roy-Byrne P, Radant A, Wingerson D, Cowley DS (1995) Human oculomotor function: reliability and diurnal variation. Biol Psychiatry 38(2):92–97

    Article  CAS  PubMed  Google Scholar 

  • Smit AC, Van Gisbergen JAM, Cools AR (1987) A parametric analysis of human saccades in different experimental paradigms. Vis Res 27(10):1745–1762

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Brice C, Nash J, Rich N, Nutt DJ (2003) Caffeine and central noradrenaline: effects on mood, cognitive performance, eye movements and cardiovascular function. J Psychopharmacol 17(3):283–292

    Article  CAS  PubMed  Google Scholar 

  • Sokmen B, Armstrong LE, Kraemer WJ, Casa DJ, Dias JC, Judelson DA, Maresh CM (2008) Caffeine use in sports: considerations for the athlete. Journal of Strength and Conditioning Research 22(3):978–986

    Article  PubMed  Google Scholar 

  • Taylor, J. L., Amann, M., Duchateau, J., Meeusen, R., & Rice, C. L. (2016). Neural contributions to muscle fatigue: from the brain to the muscle and back again. Medicine and Science in Sports and Exercise.

  • Ungerleider LG, Haxby JV (1994) ‘What’and ‘where’ in the human brain. Curr Opin Neurobiol 4(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Tian J, Liang P, Sun F (2005) Diazepam-induced changes of optokinetic nystagmus fast phase. Exp Brain Res 167(3):446–450. doi:10.1007/s00221-005-0176-x

    Article  CAS  PubMed  Google Scholar 

  • Zils E, Sprenger A, Heide W, Born J, Gais S (2005) Differential effects of sleep deprivation on saccadic eye movements. Sleep 28(9):1109

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the participants who volunteered their time to take part in the study. We are grateful to Hayden Green for his assistance in data collection.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: C.J.W.C., B.T. and N.G.; methodology: C.J.W.C., B.T. and N.G.; software: C.J.W.C., J.T. and R.H.; formal analysis: C.J.W.C.; investigation: C.J.W.C.; resources: N.G.; writing—original draft: C.J.W.C.; writing—review and editing: C.J.W.C., N.G. and B.T.; supervision: N.G.

Corresponding author

Correspondence to Nicholas Gant.

Ethics declarations

Competing interests

The authors have no competing financial interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connell, C.J.W., Thompson, B., Turuwhenua, J. et al. Caffeine increases the velocity of rapid eye movements in unfatigued humans. Psychopharmacology 234, 2311–2323 (2017). https://doi.org/10.1007/s00213-017-4638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4638-1

Keywords

Navigation