Skip to main content
Log in

Melatonin reduces motivation for cocaine self-administration and prevents relapse-like behavior in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Melatonin is a hormone involved in the entrainment of circadian rhythms, which appears dysregulated in drug users. Further, it has been demonstrated that melatonin can modulate the reinforcing effects of several drugs of abuse and may therefore play a role in drug addiction.

Objective

Here, we investigated whether administration of melatonin reduces relapse-like behavior and the motivation to seek cocaine in rats.

Methods

Male Sprague-Dawley rats were submitted to long-term cocaine self-administration training. Thereafter, melatonin effects were assessed on: (1) the motivation to work for cocaine in the break point test, (2) the relapse-like behavior in the cue-induced reinstatement test, (3) the distance traveled in the open field test, and (4) sucrose preference in a two-bottle choice paradigm. Melatonin, 25 or 50 mg/kg, was injected 3–4 h after the dark phase onset, 30 min prior to each test.

Results

Both doses of melatonin decreased the number of active pokes in both break point and cue-induced reinstatement tests, demonstrating that melatonin can reduce the cocaine-seeking behavior and the motivation to work for cocaine. Administration of the higher dose of this hormone, however, significantly reduced the number of inactive pokes during the cue-induced reinstatement test and tended to reduce animals’ locomotor activity in the open field test. Sucrose preference was unchanged in both vehicle- and melatonin-treated animal groups.

Conclusions

Our data suggest that melatonin administration may lower the risk of relapse triggered by cues in cocaine-experienced animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abarca C, Albrecht U, Spanagel R (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Nat Acad Sci U S A 99:9026–9030

    Article  CAS  Google Scholar 

  • Akhisaroglu M, Ahmed R, Kurtuncu M, Manev H, Uz T (2004) Diurnal rhythms in cocaine sensitization and in Period1 levels are common across rodent species. Pharmacol Biochem Behav 79:37–42

    Article  CAS  PubMed  Google Scholar 

  • Brick J, Pohorecky LA, Faulkner W, Adams MN (1984) Circadian variations in behavioral and biological sensitivity to ethanol. Alcohol Clin Exp Res 8:204–211

    Article  CAS  PubMed  Google Scholar 

  • Cannella N, Halbout B, Uhrig S, Evrard L, Corsi M, Corti C, Deroche-Gamonet V, Hansson AC, Spanagel R (2013) The mGluR2/3 agonist LY379268 induced anti-reinstatement effects in rats exhibiting addiction-like behavior. Neuropsychopharmacology 38:2048–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo-Romero JL, Vives-Montero F, Reiter RJ, Acuna-Castroviejo D (1993) Pineal modulation of the rat caudate-putamen spontaneous neuronal activity: roles of melatonin and vasotocin. J Pineal Res 15:147–152

    Article  CAS  PubMed  Google Scholar 

  • Conroy DA, Hairston IS, Arnedt JT, Hoffmann RF, Armitage R, Brower KJ (2012) Dim light melatonin onset in alcohol-dependent men and women compared with healthy controls. Chronobiol International 29:35–42

    Article  CAS  Google Scholar 

  • Crespi F (2012) Influence of melatonin or its antagonism on alcohol consumption in ethanol drinking rats: a behavioral and in vivo voltammetric study. Brain Res 1452:39–46

    Article  CAS  PubMed  Google Scholar 

  • Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Drummond SP, Gillin JC, Smith TL, DeModena A (1998) The sleep of abstinent pure primary alcoholic patients: natural course and relationship to relapse. Alcohol Clin Exp Res 22:1796–1802

    CAS  PubMed  Google Scholar 

  • Emens JS, Burgess HJ (2015) Effect of light and melatonin and other melatonin receptor agonists on human circadian physiology. Sleep Med Clin 10:435–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Escames G, León J, López LC, Acuña-Castroviejo D (2004) Mechanisms of N-methyl-D-aspartate receptor inhibition by melatonin in the rat striatum. J Neuroendocrinol 16:929–923

    Article  CAS  PubMed  Google Scholar 

  • Escames G, Macías M, León J, García J, Khaldy H, Martín M, Vives F, Acuña-Castroviejo D (2001) Calcium-dependent effects of melatonin inhibition of glutamatergic response in rat striatum. J Neuroendocrinol 13:459–466

    Article  CAS  PubMed  Google Scholar 

  • Garmabi B, Vousooghi N, Vosough M, Yoonessi A, Bakhtazad A, Zarrindast MR (2016) Effect of circadian rhythm disturbance on morphine preference and addiction in male rats: involvement of period genes and dopamine D1 receptor. Neuroscience 322:104–114

    Article  CAS  PubMed  Google Scholar 

  • Golombek DA, Pevet P, Cardinali DP (1996) Melatonin effects on behavior: possible mediation by the central GABAergic system. Neurosci Biobehav Rev 20:403–412

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR (2011) Melatonin—a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 93:350–384

    Article  CAS  PubMed  Google Scholar 

  • Hulka LM, Scheidegger M, Vonmoos M, Preller KH, Baumgartner MR, Herdener M, Seifritz E, Henning A, Quednow BB (2016) Glutamatergic and neurometabolic alterations in chronic cocaine users measured with (1) H-magnetic resonance spectroscopy. Addict Biol 21:205–217

    Article  CAS  PubMed  Google Scholar 

  • Imbesi M, Uz T, Yildiz S, Arslan AD, Manev H (2006) Drug- and region-specific effects of protracted antidepressant and cocaine treatment on the content of melatonin MT (1) and MT (2) receptor mRNA in the mouse brain. Int J Neuroprot Neuroregener 2:185–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572

    Article  CAS  PubMed  Google Scholar 

  • Khaldy H, Leon J, Escames G, Bikjdaouene L, Garcia JJ, Acuna-Castroviejo D (2002) Circadian rhythms of dopamine and dihydroxyphenyl acetic acid in the mouse striatum: effects of pinealectomy and of melatonin treatment. Neuroendocrinology 75:201–208

    Article  CAS  PubMed  Google Scholar 

  • Kovanen L, Saarikoski ST, Haukka J, Pirkola S, Aromaa A, Lonnqvist J, Partonen T (2010) Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol Alcohol 45:303–311

    Article  CAS  PubMed  Google Scholar 

  • Kuhlwein E, Hauger RL, Irwin MR (2003) Abnormal nocturnal melatonin secretion and disordered sleep in abstinent alcoholics. Biol Psychiatry 54:1437–1443

    Article  CAS  PubMed  Google Scholar 

  • Kurtuncu M, Arslan AD, Akhisaroglu M, Manev H, Uz T (2004) Involvement of the pineal gland in diurnal cocaine reward in mice. Eur J Pharmacol 489:203–205

    Article  CAS  PubMed  Google Scholar 

  • León J, Vives F, Gómez I, Camacho E, Gallo MA, Espinosa A, Escames G, Acuña-Castroviejo D (1998) Modulation of rat striatal glutamatergic response in search for new neuroprotective agents: evaluation of melatonin and some kynurenine derivatives. Brain Res Bull 45:525–530

    Article  PubMed  Google Scholar 

  • Logan RW, Williams WP 3rd, McClung CA (2014) Circadian rhythms and addiction: mechanistic insights and future directions. Behav Neurosci 128:387–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo AH, Aston-Jones G (2009) Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway. Eur J Neurosci 29:748–760

    Article  PubMed  Google Scholar 

  • Lynch HJ, Wurtman RJ, Moskowitz MA, Archer MC, Ho MH (1975) Daily rhythm in human urinary melatonin. Science 187:169–171

    Article  CAS  PubMed  Google Scholar 

  • McClung CA (2007) Circadian rhythms, the mesolimbic dopaminergic circuit, and drug addiction. ScientificWorldJournal 7:194–202

    Article  PubMed  Google Scholar 

  • McClung CA, Sidiropoulou K, Vitaterna M, Takahashi JS, White FJ, Cooper DC, Nestler EJ (2005) Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci U S A 102:9377–9381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan PT, Pace-Schott EF, Sahul ZH, Coric V, Stickgold R, Malison RT (2006) Sleep, sleep-dependent procedural learning and vigilance in chronic cocaine users: evidence for occult insomnia. Drug Alcohol Depend 82:238–249

    Article  CAS  PubMed  Google Scholar 

  • Noori HR, Spanagel R, Hansson AC (2012) Neurocircuitry for modeling drug effects. Addict Biol 17:827–864

    Article  CAS  PubMed  Google Scholar 

  • Okamura H, Berod A, Julien JF, Geffard M, Kitahama K, Mallet J, Bobillier P (1989) Demonstration of GABAergic cell bodies in the suprachiasmatic nucleus: in situ hybridization of glutamic acid decarboxylase (GAD) mRNA and immunocytochemistry of GAD and GABA. Neurosci Lett 102:131–136

    Article  CAS  PubMed  Google Scholar 

  • Peres R, do Amaral FG, Madrigrano TC, Scialfa JH, Bordin S, Afeche SC, Cipolla-Neto J (2011) Ethanol consumption and pineal melatonin daily profile in rats. Addict Biol 16:580–590

    Article  CAS  PubMed  Google Scholar 

  • Perreau-Lenz S, Spanagel R (2008) The effects of drugs of abuse on clock genes. Drug News Perspect 21:211–217

    Article  CAS  PubMed  Google Scholar 

  • Schiller ED, Champney TH, Reiter CK, Dohrman DP (2003) Melatonin inhibition of nicotine-stimulated dopamine release in PC12 cells. Brain Res 966:95–102

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Tahara Y, Hirao A (2010) The adjustment and manipulation of biological rhythms by light, nutrition, and abused drugs. Adv Drug Deliv Rev 62:918–927

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Oei TP, Ng KT, Armstrong S (1980) Rat self-administration of ethanol: enhancement by darkness and exogenous melatonin. Physiol Behav 25:449–455

    Article  CAS  PubMed  Google Scholar 

  • Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, Lascorz J, Depner M, Holzberg D, Soyka M, Schreiber S, Matsuda F, Lathrop M, Schumann G, Albrecht U (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11:35–42

    Article  CAS  PubMed  Google Scholar 

  • Stowie AC, Amicarelli MJ, Prosser RA, Glass JD (2015) Chronic cocaine causes long-term alterations in circadian period and photic entrainment in the mouse. Neuroscience 284:171–179

    Article  CAS  PubMed  Google Scholar 

  • Tzschentke TM, Schmidt WJ (2003) Glutamatergic mechanisms in addiction. Mol Psychiatry 8:373–382

    Article  CAS  PubMed  Google Scholar 

  • Uz T, Akhisaroglu M, Ahmed R, Manev H (2003) The pineal gland is critical for circadian Period1 expression in the striatum and for circadian cocaine sensitization in mice. Neuropsychopharmacology 28:2117–2123

    CAS  PubMed  Google Scholar 

  • Uz T, Arslan AD, Kurtuncu M, Imbesi M, Akhisaroglu M, Dwivedi Y, Pandey GN, Manev H (2005) The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Brain Res Mol Brain Res 136:45–53

    Article  CAS  PubMed  Google Scholar 

  • Vengeliene V, Noori HR, Spanagel R (2015) Activation of melatonin receptors reduces relapse-like alcohol consumption. Neuropsychopharmacology 40:2897–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Gall C, Stehle JH, Weaver DR (2002) Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res 309:151–162

    Article  Google Scholar 

  • Wan Q, Man HY, Liu F, Braunton J, Niznik HB, Pang SF, Brown GM, Wang YT (1999) Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors. Nat Neurosci 2:401–403

    Article  CAS  PubMed  Google Scholar 

  • Zisapel N (2001) Melatonin-dopamine interactions: from basic neurochemistry to a clinical setting. Cell Mol Neurobiol 21:605–616

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Elena Büchler for her technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Reinhart-Koselleck Award SP 383/5-1; and the ERANET COCADDICT. TTT was funded by CAPES Foundation, Ministry of Education of Brazil, Brasília—DF 70040-020, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Spanagel.

Ethics declarations

All experimental procedures were approved by the Committee on Animal Care and Use (Regierungspräsidium Karlsruhe), and carried out in accordance with the local Animal Welfare Act and the European Communities Council Directive of 24 November 1986 (86/609/EEC).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, T.T., Vengeliene, V. & Spanagel, R. Melatonin reduces motivation for cocaine self-administration and prevents relapse-like behavior in rats. Psychopharmacology 234, 1741–1748 (2017). https://doi.org/10.1007/s00213-017-4576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4576-y

Keywords

Navigation