Skip to main content

Advertisement

Log in

Repeated administration of the 5-HT1B/1A agonist, RU 24969, facilitates the acquisition of MDMA self-administration: role of 5-HT1A and 5-HT1B receptor mechanisms

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

3,4 Methylenedioxymethamphetamine (MDMA) preferentially stimulates the release of serotonin (5-HT) that subsequently produces behavioral responses by activation of post-synaptic receptor mechanisms. The 5-HT1A and 5-HT1B receptors are both well localized to regulate dopamine (DA) release, and have been implicated in modulating the reinforcing effects of many drugs of abuse, but a role in acquisition of self-administration has not been determined.

Objectives

This study was designed to determine the effect of pharmacological manipulation of 5-HT1A and 5-HT1B receptor mechanisms on the acquisition of MDMA self-administration.

Methods

The 5-HT1B/1A receptor agonist, RU 24969 (0.0 or 3.0 mg/kg, bid), was administered for 3 days in order to down-regulate both 5-HT1A and 5-HT1B receptors. Following the pretreatment phase, latency to acquisition of MDMA self-administration was measured.

Results

Repeated administration of RU 24969 significantly decreased the latency to acquisition and increased the proportion of animals that acquired MDMA self-administration. Dose-effect curves for the 5-HT1A-mediated hyperactivity produced by the 5-HT1A agonist, 8-OH-DPAT, and the 5-HT1B-mediated adipsic response produced by RU 24969 were shifted rightward, suggesting a desensitization of 5-HT1A and 5-HT1B receptor mechanisms.

Conclusions

These data suggest that the initial reinforcing effects of MDMA are modulated by 5-HT1A and/or 5-HT1B receptor mechanisms. The potential impact of these changes on the DAergic response relevant to self-administration and a possible role in conditioned reinforcement pertaining to acquisition of self-administration are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Alex K, Pehek E (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 113:296–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arborelius L, Chergui K, Murase S, Nomikos GG, Höök BB, Chouvet G, Hacksell U, Svensson TH (1993) The 5-HT1A receptor selective ligands, (R)-8-OH-DPAT and (S)-UH-301, differentially affect the activity of midbrain dopamine neurons. Naunyn Schmiedebergs Arch Pharmacol 347:353–362

    Article  CAS  PubMed  Google Scholar 

  • Aronsen D, Webster J, Schenk S (2014) RU 24969-produced adipsia and hyperlocomotion: differential role of 5HT1A and 5HT1B receptor mechanisms. Pharmacol Biochem Behav 124:1–4

    Article  CAS  PubMed  Google Scholar 

  • Aznar S, Qian Z, Shah R, Rahbek B, Knudsen GM (2003) The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain. Brain Res 959:58–67

    Article  CAS  PubMed  Google Scholar 

  • Ball KT, Walsh KM, Rebec GV (2007) Reinstatement of MDMA (ecstasy) seeking by exposure to discrete drug-conditioned cues. Pharmacol Biochem Behav 87:420–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL (1993) Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem 268:23422–23426

    CAS  PubMed  Google Scholar 

  • Baumann MH, Clark RD, Franken FH, Rutter JJ, Rothman RB (2008) Tolerance to 3,4-methylenedioxymethamphetamine in rats exposed to single high-dose binges. Neuroscience 152:773–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair C, Bonardi C, Hall G (2004) Differential effects of 8-OH-DPAT on two forms of appetitive Pavlovian conditioning in the rat. Behav Neurosci 118:1439

    Article  CAS  PubMed  Google Scholar 

  • Boulenguez P, Rawlins J, Chauveau J, Joseph M, Mitchell S, Gray J (1996) Modulation of dopamine release in the nucleus accumbens by 5-HT1B agonists: involvement of the hippocampo-accumbens pathway. Neuropharmacology 35:1521–1529

    Article  CAS  PubMed  Google Scholar 

  • Bradbury S, Bird J, Colussi-Mas J, Mueller M, Ricaurte G, Schenk S (2014) Acquisition of MDMA self-administration: pharmacokinetic factors and MDMA-induced serotonin release. Addict Biol 19:874–884

    Article  CAS  PubMed  Google Scholar 

  • Brennan KA, Carati C, Lea RA, Fitzmaurice PS, Schenk S (2009) Effect of D1-like and D2-like receptor antagonists on methamphetamine and 3,4-methylenedioxymethamphetamine self-administration in rats. Behav Pharmacol 20:688–694

    Article  CAS  PubMed  Google Scholar 

  • Callaway CW, Geyer MA (1992) Tolerance and cross-tolerance to the activating effects of 3,4-methylenedioxymethamphetamine and a 5-hydroxytryptamine1B agonist. J Pharmacol Exp Ther 263:318–326

    CAS  PubMed  Google Scholar 

  • Carroll ME, Lac ST (1997) Acquisition of iv amphetamine and cocaine self-administration in rats as a function of dose. Psychopharmacology (Berl) 129:206–214

    Article  CAS  Google Scholar 

  • Chennaoui M, Drogou C, Gomez-Merino D, Grimaldi B, Fillion G, Guezennec C (2001) Endurance training effects on 5-HT1B receptors mRNA expression in cerebellum, striatum, frontal cortex and hippocampus of rats. Neurosci Lett 307:33–36

    Article  CAS  PubMed  Google Scholar 

  • Colussi-Mas J, Wise RJ, Howard A, Schenk S (2010) Drug seeking in response to a priming injection of MDMA in rats: relationship to initial sensitivity to self-administered MDMA and dorsal striatal dopamine. Int J Neuropsychopharmacol 13:1315–1327

    Article  CAS  PubMed  Google Scholar 

  • Cottler LB, Womack SB, Compton WM, Ben-Abdallah A (2001) Ecstasy abuse and dependence among adolescents and young adults: applicability and reliability of DSM-IV criteria. Human Psychopharmacol 16:599–606

    Article  CAS  Google Scholar 

  • Daniela E, Brennan K, Gittings D, Hely L, Schenk S (2004) Effect of SCH 23390 on (±)-3,4-methylenedioxymethamphetamine hyperactivity and self-administration in rats. Pharmacol Biochem Behav 77:745–750

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt L, Barker B, Topp L (2004) Patterns of ecstasy use in Australia: findings from a national household survey. Addiction 99:187–195

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci 85:5274–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Ciano P, Everitt BJ (2004) Conditioned reinforcing properties of stimuli paired with self-administered cocaine, heroin or sucrose: implications for the persistence of addictive behaviour. Neuropharmacology 47(Suppl 1):202–13

    Article  PubMed  Google Scholar 

  • Doherty MD, Pickel VM (2001) Targeting of serotonin 1A receptors to dopaminergic neurons within the parabrachial subdivision of the ventral tegmental area in rat brain. J Comp Neurol 433:390–400

    Article  CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Ullrich T, Rice KC, Woods JH, Winger G (2002) 3,4-Methylenedioxymethamphetamine (MDMA,“ ecstasy”) and its stereoisomers as reinforcers in rhesus monkeys: serotonergic involvement. Psychopharmacology (Berl) 161:356–364

    Article  CAS  Google Scholar 

  • Fletcher PJ, Azampanah A, Korth KM (2002) Activation of 5-HT1B receptors in the nucleus accumbens reduces self-administration of amphetamine on a progressive ratio schedule. Pharmacol Biochem Behav 71:717–725

    Article  CAS  PubMed  Google Scholar 

  • Frick LR, Bernardez-Vidal M, Hocht C, Zanutto BS, Rapanelli M (2015) Dual role of serotonin in the acquisition and extinction of reward-driven learning: involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors. Behav Brain Res 277:193–203

    Article  CAS  PubMed  Google Scholar 

  • Fuss J, Vogt MA, Weber KJ, Burke TF, Gass P, Hensler JG (2013) Hippocampal serotonin-1A receptor function in a mouse model of anxiety induced by long-term voluntary wheel running. Synapse 67:648–655

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  • Gui Z, Zhang Q, Liu J, Zhang L, Ali U, Hou C, Fan L, Sun Y, Wu Z, Hui Y (2011) Unilateral lesion of the nigrostriatal pathway decreases the response of fast-spiking interneurons in the medial prefrontal cortex to 5-HT1A receptor agonist and expression of the receptor in parvalbumin-positive neurons in the rat. Neurochem Int 59:618–627

    Article  CAS  PubMed  Google Scholar 

  • Hållbus M, Magnusson T, Magnusson O (1997) Influence of 5-HT1B/1D receptors on dopamine release in the guinea pig nucleus accumbens: a microdialysis study. Neurosci Lett 225:57–60

    Article  PubMed  Google Scholar 

  • Hensler JG, Vogt MA, Gass P (2010) Regulation of cortical and hippocampal 5-HT 1A receptor function by corticosterone in GR+/− mice. Psychoneuroendocrinology 35:469–474

    Article  CAS  PubMed  Google Scholar 

  • Hillegaart V, Estival A, Ahlenius S (1996) Evidence for specific involvement of 5-HT1A and 5-HT2A/C receptors in the expression of patterns of spontaneous motor activity of the rat. Eur J Pharmacol 295:155–161

    Article  CAS  PubMed  Google Scholar 

  • Hiroi R, Neumaier JF (2009) Estrogen decreases 5-HT1B autoreceptor mRNA in selective subregion of rat dorsal raphe nucleus: inverse association between gene expression and anxiety behavior in the open field. Neuroscience 158:456–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homberg JR, De Boer SF, Raasø HS, Olivier JD, Verheul M, Ronken E, Cools AR, Ellenbroek BA, Schoffelmeer AN, Vanderschuren LJ (2008) Adaptations in pre-and postsynaptic 5-HT1A receptor function and cocaine supersensitivity in serotonin transporter knockout rats. Psychopharmacology (Berl) 200:367–380

    Article  CAS  Google Scholar 

  • Ichikawa J, Kuroki T, Kitchen MT, Meltzer HY (1995) R (+)-8-OH-DPAT, a 5-HT1A receptor agonist, inhibits amphetamine-induced dopamine release in rat striatum and nucleus accumbens. Eur J Pharmacol 287:179–184

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa J, Meltzer HY (2000) The effect of serotonin1A receptor agonism on antipsychotic drug-induced dopamine release in rat striatum and nucleus accumbens. Brain Res 858:252–263

    Article  CAS  PubMed  Google Scholar 

  • Iyo AH, Kieran N, Chandran A, Albert PR, Wicks I, Bissette G, Austin MC (2009) Differential regulation of the serotonin 1 A transcriptional modulators five prime repressor element under dual repression-1 and nuclear-deformed epidermal autoregulatory factor by chronic stress. Neuroscience 163:1119–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalivas PW, Duffy P, White SR (1998) MDMA elicits behavioral and neurochemical sensitization in rats. Neuropsychopharmacology 18:469–479

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Sorg B, Hooks M (1993) The pharmacology and neural circuitry of sensitization to psychostimulants. Behav Pharmacol 4:315–334

    Article  CAS  PubMed  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  • Kindlundh A, Lindblom J, Bergström L, Nyberg F (2003) The anabolic–androgenic steroid nandrolone induces alterations in the density of serotonergic 5HT1B and 5HT2 receptors in the male rat brain. Neuroscience 119:113–120

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (1992) Neural mechanisms of drug reinforcement. Ann N Y Acad Sci 654:171–191

    Article  CAS  PubMed  Google Scholar 

  • Lile JA, Ross JT, Nader MA (2005) A comparison of the reinforcing efficacy of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) with cocaine in rhesus monkeys. Drug Alcohol Depend 78:135–140

    Article  CAS  PubMed  Google Scholar 

  • Loh EA, Roberts DC (1990) Break-points on a progressive ratio schedule reinforced by intravenous cocaine increase following depletion of forebrain serotonin. Psychopharmacology (Berl) 101:262–266

    Article  CAS  Google Scholar 

  • Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW (1993) A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 11:449–458

    Article  CAS  PubMed  Google Scholar 

  • Müller CP, Carey RJ, Huston JP, Silva MADS (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol 81:133–178

    Article  PubMed  Google Scholar 

  • Neisewander JL, Cheung TH, Pentkowski NS (2014) Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: implications for medications development. Neuropharmacology 76:301–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Dell LE, Parsons LH (2004) Serotonin1B receptors in the ventral tegmental area modulate cocaine-induced increases in nucleus accumbens dopamine levels. J Pharmacol Exp Ther 311:711–719

    Article  PubMed  Google Scholar 

  • Oakly A, Brox B, Schenk S, Ellenbroek B (2014) A genetic deletion of the serotonin transporter greatly enhances the reinforcing properties of MDMA in rats. Mol Psychiatry 19:534–535

    Article  CAS  PubMed  Google Scholar 

  • Oberlander C, Demassey Y, Verdu A, Van de Velde D, Bardelay C (1987) Tolerance to the serotonin 5-HT1 agonist RU 24969 and effects on dopaminergic behaviour. Eur J Pharmacol 139:205–214

    Article  CAS  PubMed  Google Scholar 

  • Parsons LH, Koob GF, Weiss F (1999) RU 24969, a 5-HT1B/1A receptor agonist, potentiates cocaine-induced increases in nucleus accumbens dopamine. Synapse 32:132–135

    Article  CAS  PubMed  Google Scholar 

  • Parsons LH, Weiss F, Koob GF (1998) Serotonin1B receptor stimulation enhances cocaine reinforcement. J Neurosci 18:10078–10089

    CAS  PubMed  Google Scholar 

  • Peltier R, Schenk S (1993) Effects of serotonergic manipulations on cocaine self-administration in rats. Psychopharmacology (Berl) 110:390–394

    Article  CAS  Google Scholar 

  • Przegaliñski E, Gołda A, Frankowska M, Zaniewska M, Filip M (2007) Effects of serotonin 5-HT1B receptor ligands on the cocaine- and food-maintained self-administration in rats. Eur J Pharmacol 559:165–172

    Article  PubMed  Google Scholar 

  • Reveron ME, Maier EY, Duvauchelle CL (2010) Behavioral, thermal and neurochemical effects of acute and chronic 3,4-methylenedioxymethamphetamine (“ecstasy”) self-administration. Behav Brain Res 207:500–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritz MC, Kuhar MJ (1989) Relationship between self-administration of amphetamine and monoamine receptors in brain: comparison with cocaine. J Pharmacol Exp Ther 248:1010–1017

    CAS  PubMed  Google Scholar 

  • Rothman RB, Blough BE, Woolverton WL, Anderson KG, Negus SS, Mello NK, Roth BL, Baumann MH (2005) Development of a rationally designed, low abuse potential, biogenic amine releaser that suppresses cocaine self-administration. J Pharmacol Exp Ther 313:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Sari Y (2004) Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28:565–582

    Article  CAS  PubMed  Google Scholar 

  • Schenk S, Colussi-Mas J, Do J, Bird J (2012) Profile of MDMA self-administration from a large cohort of rats: MDMA develops a profile of dependence with extended testing. J Drug Alcohol Res 1:1–6

    Article  Google Scholar 

  • Schenk S, Gittings D, Colussi-Mas J (2011) Dopaminergic mechanisms of reinstatement of MDMA-seeking behaviour in rats. Br J Pharmacol 162:1770–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk S, Hely L, Lake B, Daniela E, Gittings D, Mash DC (2007) MDMA self-administration in rats: acquisition, progressive ratio responding and serotonin transporter binding. Eur J Neurosci 26:3229–3236

    Article  PubMed  Google Scholar 

  • Schenk S, Partridge B (2000) Sensitization to cocaine’s reinforcing effects produced by various cocaine pretreatment regimens in rats. Pharmacol Biochem Behav 66:765–770

    Article  CAS  PubMed  Google Scholar 

  • Shankaran M, Gudelsky GA (1999) A neurotoxic regimen of MDMA suppresses behavioral, thermal and neurochemical responses to subsequent MDMA administration. Psychopharmacology (Berl) 147:66–72

    Article  CAS  Google Scholar 

  • Suzuki H, Han SD, Lucas LR (2010) Chronic passive exposure to aggression decreases D2 and 5-HT1B receptor densities. Physiol Behav 99:562–570

    Article  CAS  PubMed  Google Scholar 

  • Topp L, Hall W, Hando J (1997) Is there a dependence syndrome for ecstasy? NDARC Technical Report No. 51. National Drug and Alcohol Research Centre, University of NSW, Sydney, pp 1–36

  • United Nations Office on Drugs and Crime (2015) World drug report, 2015

    Google Scholar 

  • Wang S-h, Zhang Z-j, Guo Y-j, Teng G-j, Chen B-a (2009) Decreased expression of serotonin 1A receptor in the dentate gyrus in association with chronic mild stress: a rat model of post-stroke depression. Psychiatry Res 170:245–251

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Woolverton WL (2007) Estimating the relative reinforcing strength of (±)-3,4-methylenedioxymethamphetamine (MDMA) and its isomers in rhesus monkeys: comparison to (+)-methamphetamine. Psychopharmacology (Berl) 189:483–488

    Article  CAS  Google Scholar 

  • Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (2005) Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs. J Pharmacol Exp Ther 313:848–854

    Article  CAS  PubMed  Google Scholar 

  • Winsauer P, Rodriguez F, Cha A, Moerschbaecher J (1999) Full and partial 5-HT1A receptor agonists disrupt learning and performance in rats. J Pharmacol Exp Ther 288:335–347

    CAS  PubMed  Google Scholar 

  • Yan Q-S, Yan S-E (2001a) Activation of 5-HT1B/1D receptors in the mesolimbic dopamine system increases dopamine release from the nucleus accumbens: a microdialysis study. European Journal of Pharmacology 418: 55-64.

  • Yan Q-S, Yan S-E (2001b) Serotonin-1B receptor-mediated inhibition of [3H] GABA release from rat ventral tegmental area slices. Journal of Neurochemistry 79: 914-922.

  • Yan Q-S, Zheng S-Z, Yan S-E (2004) Involvement of 5-HT1B receptors within the ventral tegmental area in regulation of mesolimbic dopaminergic neuronal activity via GABA mechanisms: a study with dual-probe microdialysis. Brain Res 1021:82–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Schenk.

Ethics declarations

All procedures were approved by the Victoria University of Wellington Animal Ethics Committee.

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronsen, D., Bukholt, N. & Schenk, S. Repeated administration of the 5-HT1B/1A agonist, RU 24969, facilitates the acquisition of MDMA self-administration: role of 5-HT1A and 5-HT1B receptor mechanisms. Psychopharmacology 233, 1339–1347 (2016). https://doi.org/10.1007/s00213-016-4225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4225-x

Keywords

Navigation