Skip to main content
Log in

Differential effects of acute administration of SCH-23390, a D1 receptor antagonist, and of ethanol on swimming activity, anxiety-related responses, and neurochemistry of zebrafish

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The zebrafish has become an increasingly popular animal model for investigating ethanol’s actions in the brain and its effects on behavior. Acute exposure to ethanol in zebrafish has been shown to induce a dose-dependent increase of locomotor activity, to reduce fear- and anxiety-related behavioral responses, and to increase the levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC).

Objectives

The objective of the present study was to investigate the role of dopamine D1 receptors (D1-R) in ethanol-induced locomotor activity in zebrafish.

Methods

Zebrafish were pre-treated with SCH-23390 (0 or 1 mg/L bath concentration), a D1-R antagonist, and subsequently exposed to ethanol (0, 0.25, 0.5, 1.0 % v/v). To explore potential underlying mechanisms, we quantified levels of dopamine, DOPAC, serotonin, and 5-HIAA from whole-brain tissue using high-precision liquid chromatography.

Results

We found pre-treatment with the D1-R antagonist to attenuate locomotor activity independent of ethanol concentration. Furthermore, unlike ethanol, D1-R antagonism did not alter behavioral responses associated with fear and anxiety. Pre-treatment with SCH-23390 decreased levels of dopamine and DOPAC, but this effect was also independent of ethanol concentration. The D1-R antagonist also reduced serotonin and 5-hydroxyindole acetic acid (5-HIAA) levels.

Conclusion

These results suggest a multifaceted and at least partially independent role of dopamine D1 receptors in ethanol-induced locomotor activity and anxiety-related responses as well as in the functioning of the dopaminergic and serotoninergic neurotransmitter systems in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arias C, Mlewski EC, Hansen C, Molina JC, Paglini MG, Spear NE (2010) Dopamine receptors modulate ethanol’s locomotor-activating effects in preweanling rats. Dev Psychobiol 52:13–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benkirane S, Arbilla S, Langer SZ (1987) A functional response to D1 dopamine receptor stimulation in the central nervous system: inhibition of the release of [3H]-serotonin from the rat substantia nigra. Naunyn Schmiedebergs Arch Pharmacol 335:502–507

    Article  CAS  PubMed  Google Scholar 

  • Boehmler W, Carr T, Thisse C, Thisse B, Canfield VA, Levenson R (2007) D4 Dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval swimming behavior. Genes Brain Behav 6:155–166

    Article  CAS  PubMed  Google Scholar 

  • Boehmler W, Obrecht-Pflumio S, Canfield V, Thisse C, Thisse B, Levenson R (2004) Evolution and expression of D2 and D3 dopamine receptor genes in zebrafish. Dev Dyn 230:481–493

    Article  CAS  PubMed  Google Scholar 

  • Boyce-Rustay JM, Wiedholz LM, Millstein RA, Carroll J, Murphy DL, Daws LC, Holmes A (2006) Ethanol-related behaviors in serotonin transporter knockout mice. Alcohol Clin Exp Res 30:1957–65

    Article  CAS  PubMed  Google Scholar 

  • Bourne JA (2001) SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS Drug Rev 7:399–414

    Article  CAS  PubMed  Google Scholar 

  • Briggs CA, Pollock NJ, Frail DE, Paxson CL, Rakowski RF, Kang CH, Kebabian JW (1991) Activation of the 5-HT1C receptor expressed in Xenopus oocytes by the benzazepines SCH 23390 and SK 38393. Br J Pharmacol 104:1038–1044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Centonze D, Grande C, Saulle E, Martin AB, Gubellini P, Pavon N, Pisani A, Bernardi G, Moratalla R, Calabresi P (2003) Distinct roles of D1 and D5 dopamine recepotors in motor activity and striatal synaptic plasticity. J Neurosci 23:8506–8512

    CAS  PubMed  Google Scholar 

  • Chatterjee D, Gerlai R (2009) High precision liquid chromatography analysis of dopaminergic and serotonergic responses to acute alcohol exposure in zebrafish. Behav Brain Res 200:208–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chatterjee D, Shams S, Gerlai R (2014) Chronic and acute alcohol administration induced neurochemical changes in the brain: comparison of distinct zebrafish populations. Amino Acids 46:921–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cowen MS, Lawrence MJ (1999) The role of opiod-dopamine interactions in the introduction and maintenance of ethanol consumption. Prog Neuropsychopharmacol Biol Psychiatry 23:1171–1212

    Article  CAS  PubMed  Google Scholar 

  • Davies M (2003) The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J Psychiatry Neurosci 28:263–274

    PubMed Central  PubMed  Google Scholar 

  • Daws LC, Montanez S, Munn JL, Owens WA, Baganz NL, Boyce-Rustay JM, Millstein RA, Wiedholz LM, Murphy DL, Holmes A (2006) Ethanol inhibits clearance of brain serotonin by a serotonin transporter-independent mechanism. J Neurosci 26:6431–6438

    Article  CAS  PubMed  Google Scholar 

  • Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Echevarria DJ, Toms CN, Jouandot DJ (2011) Alcohol-induced behavior change in zebrafish models. Rev Neurosci 22:85–93

    CAS  PubMed  Google Scholar 

  • Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebraifsh. Behav Brain Res 205:38–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fremeau RT Jr, Duncan GE, Fornaretto MG, Dearry A, Gingrich JA, Breese GR, Caron MG (1991) Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc Natl Acad Sci USA 88:3772–3776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujisawa H, Okuno S (2005) Regulatory mechanisms of tyrosine hydroxylase activity. Biochem Biophys Res Commun 338:271–276

    Article  CAS  PubMed  Google Scholar 

  • Gerlai R, Chatterjee D, Pereira T, Sawashima T, Krishnannair R (2009a) Acute and chronic alcohol dose: population differences in behavior and neurochemistry of zebrafish. Genes Brain Behav 8:586–599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerlai R, Fernandes Y, Pereira T (2009b) Zebrafish (Danio rerio) responds to the animated image of a predator: Towards the development of an automated aversive task. Behav Brain Res 201:318–324

    Article  PubMed Central  PubMed  Google Scholar 

  • Haughey HM, Fleckenstein AE, Metzger RR, Hanson GR (2000) The effects of methamphetamine on serotonin transporter activity: role of dopamine and hypothermia. J Neurochem 75:1608–1617

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa S, Fikre-Merid M, Diksic M (2012) 5-HT2A receptor antagonist M100907 reduces serotonin synthesis: an autoradiographic study. Brain Res Bull 87:44–49

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa S, Watanabe A, Nishi K, Nguyen KQ, Diksic M (2005) Selective 5-HT1B receptor agonist reduces serotonin synthesis following acute, and not chronic, drug administration: results of an autoradiographic study. Neurochem Int 46:261–272

    Article  CAS  PubMed  Google Scholar 

  • Irons TD, Kelly PE, Hunter DL, Macphail RC, Padilla S (2013) Acute administration of dopaminergic drugs has differential effects on locomotion in larval zebrafish. Pharmacol Biochem Behav 103:792–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalivas PW, Duffy P, Eberhart H (1990) Modulation of A10 dopamine neurons by gamma-aminobutyric acid agonists. J Pharmacol Exp Ther 253:858–866

    CAS  PubMed  Google Scholar 

  • Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35:63–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koechling UM, Amit Z (1993) Effects of CA antagonist on ethanol-induced excitation in habituated and nonhabituated mice: interaction with stress factors? Pharmacol Biochem Behav 44:791–796

    Article  CAS  PubMed  Google Scholar 

  • Koechling UM, Smith BR, Amit Z (1990) Differential effects of catecholamine antagonists on ethanol-induced excitation in mice. Psychopharmacology (Berl) 102:234–238

    Article  CAS  Google Scholar 

  • Le AD, Tomkins D, Higgins G, Quan B, Sellers EM (1997) Effects of 5-HT3, D1 and D2 receptor antagonists on ethanol- and cocaine-induced locomotion. Pharmacol Biochem Behav 57:325–332

    Article  CAS  PubMed  Google Scholar 

  • Li P, Shah S, Huang L, Carr AL, Gao Y, Thisse C, Thisse B, Li L (2007) Cloning and spatial and temporal expression of the zebrafish dopamine D1 receptor. Dev Dyn 236:1339–1346

    Article  CAS  PubMed  Google Scholar 

  • Mathur P, Guo S (2011) Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish. Behav Brain Res 219:234–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McBride WJ, Murphy JM, Gatto GJ, Levy AD, Yoshimoto K, Lumeng L, Li TK (1993) CNS mechanisms of alcohol administration. Alcohol Alcohol Suppl 2:463–467

    CAS  PubMed  Google Scholar 

  • Millan MJ, Newman-Tancredi A, Quentric Y, Cussac D (2001) The “selective” dopamine D1 receptor antagonist, SCH23390, is potent and high efficacy agonist at cloned humane serotonin2C receptors. Psychopharmacology (Berl) 156:58–62

    Article  CAS  Google Scholar 

  • Nowicki M, Tran S, Muraleetharan A, Markovic S, Gerlai R (2014) Serotonin antagonist induce anxiolytic and anxiogenic-like behavior in zebrafish in a receptor-subtype dependent manner. Pharmacol Biochem Behav 126:170–180

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Wagle M, Mueller T, Mathur P, Lockwood BL, Bretaud S, Guo S (2009) Ethanol-modulated camouflage response screen in zebrafish uncovers a novel role for cAMP and extracellular signal-regulated kinase signalling in behavioural sensitivity to ethanol. J Neurosci 29:8408–8418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puttonen HA, Sundvik M, Rozov S, Chen YC, Panula P (2013) Acute ethanol treatment upregulatesth1, th2, and hdc in larval zebrafish in stable networks. Front Neural Circuits 7:102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rico EP, Rosemberg DB, Dias RD, Bogo MR, Bonan CD (2007) Ethanol alters acetylcholinesterase activity and gene expression in zebrafish brain. Toxicol Lett 174:25–30

    Article  CAS  PubMed  Google Scholar 

  • Rosemberg DB, Braga MM, Rico EP, Loss CM, Cordova SD, Mussulini BH, Blaser RE, Leite CE, Campos MM, Dias RD, Calcagnotto ME, de Oliveira DL, Souza DO (2012) Behavioral effects of taurine pretreatment in zebrafish acutely exposed to ethanol. Neuropharmacology 63:613–623

    Article  CAS  PubMed  Google Scholar 

  • Sackerman J, Donegan JJ, Cunningham CS, Nguyen NN, Lawless K, Long A, Benno RH, Gould GG (2010) Zebrafish behaviour in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Int J Comp Psychol 23:43–61

    PubMed Central  PubMed  Google Scholar 

  • Scerbina T, Chatterjee D, Gerlai R (2012) Dopamine receptor antagonism disrupts social preference in zebrafish: a strain comparison study. Amino Acids 43:2059–2072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen EH, Crabbe JC, Phillips TJ (1995) Dopamine antagonist effects on locomotor activity in naive and ethanol-treated FAST and SLOW selected lines of mice. Psychopharmacology (Berl) 118:28–36

    Article  CAS  Google Scholar 

  • Sterling ME, Karatayev O, Chang GQ, Algava DB, Leibowitz SF (2015) Model of voluntary ethanol intake in zebrafish: effect on behaviour and hypothalamic orexigenic peptides. Behav Brain Res 278C:29–39

    Article  Google Scholar 

  • Tissari AH, Lillgals MS (1993) Reduction of dopamine synthesis inhibition by dopamine autoreceptor activation in striatal synaptosomes with in vivo reserpine administration. J Neurochem 61:231–238

    Article  CAS  PubMed  Google Scholar 

  • Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, Ono T (2005) Dopamine D1 receptors involved in locomotor activity and accumbens neural responses to prediction of reward associated with place. Proc Natl Acad Sci U S A 102:2117–2122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tran S, Chatterjee D, Gerlai R (2015a) An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Daniorerio). Behav Brain Res 276:161–170

    Article  CAS  PubMed  Google Scholar 

  • Tran S, Gerlai R (2013) Time-course of behavioural changes induced by ethanol in zebrafish (Daniorerio). Behav Brain Res 252:204–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tran S, Nowicki M, Chatterjee D, Gerlai R (2015b) Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver. Prog Neuropsychopharmacol Biol Psychiatry 56:221–226

    Article  CAS  PubMed  Google Scholar 

  • Tran S, Nowicki M, Muraleetharan A, Gerlai R (2015c) Differential effects of dopamine D1 and D2/3 receptor antagonism on motor responses. Psychopharmacology 232:795–806

    Article  CAS  PubMed  Google Scholar 

  • Wahlsten D (1990) Insensitivity of the analysis of variance to heredity x environment interaction. Behav Brain Sci 13:109–61

    Article  Google Scholar 

  • Wangle M, Mathur P, Guo S (2011) Corticotropin-releasing factor critical for zebrafish camouflage behavior is regulated by light and sensitive to ethanol. J Neurosci 31:214–224

    Article  Google Scholar 

  • Yan QS (1999) Extracellular dopamine and serotonin after ethanol monitored with 5-minute microdialysis. Alcohol 19:1–7

    Article  CAS  PubMed  Google Scholar 

  • Yavich L, Tiihonen J (2000) Ethanol modulates evoked dopamine release in mouse nucleus accumbens: dependence on social stress and dose. Eur J Pharmacol 401:365–373

    Article  CAS  PubMed  Google Scholar 

  • Yim HJ, Gonzales RA (2000) Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol 22:107–115

    Article  CAS  PubMed  Google Scholar 

  • Yim HJ, Robinson DL, White ML, Jaworski JN, Randall PK, Lancaster FE, Gonzales RA (2000) Dissociation between the time course of ethanol and extracellular concentrations in the nucleus accumbens after a single intraperitoneal injection. Alcohol Clin Exp Res 24:781–788

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by an NSERC Discovery Grant (#311637) issued to RG and an NSERC CGSD issued to ST. We would like to thank Niveen Fulcher for her assistance with behavioral testing.

Ethical statement

The research reported here was reviewed and approved by the Local Animal Care Committee (LACC) of the University of Toronto Mississauga and is in accordance with the guidelines of the Canadian Council for Animal Care (CCAC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven Tran or Robert Gerlai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, S., Nowicki, M., Muraleetharan, A. et al. Differential effects of acute administration of SCH-23390, a D1 receptor antagonist, and of ethanol on swimming activity, anxiety-related responses, and neurochemistry of zebrafish. Psychopharmacology 232, 3709–3718 (2015). https://doi.org/10.1007/s00213-015-4030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4030-y

Keywords

Navigation