Skip to main content

Advertisement

Log in

New automated procedure to assess context recognition memory in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

Recognition memory is an important aspect of human declarative memory and is one of the routine memory abilities altered in patients with amnestic syndrome and Alzheimer’s disease. In rodents, recognition memory has been most widely assessed using the novel object preference paradigm, which exploits the spontaneous preference that animals display for novel objects. Here, we used nose-poke units instead of objects to design a simple automated method for assessing context recognition memory in mice.

Methods

In the acquisition trial, mice are exposed for the first time to an operant chamber with one blinking nose-poke unit. In the choice session, a novel nonblinking nose-poke unit is inserted into an empty spatial location and the number of nose poking dedicated to each set of nose-poke unit is used as an index of recognition memory.

Results

We report that recognition performance varies as a function of the length of the acquisition period and the retention delay and is sensitive to conventional amnestic treatments. By manipulating the features of the operant chamber during a brief retrieval episode (3-min long), we further demonstrate that reconsolidation of the original contextual memory depends on the magnitude and the type of environmental changes introduced into the familiar spatial environment.

Conclusions

These results show that the nose-poke recognition task provides a rapid and reliable way for assessing context recognition memory in mice and offers new possibilities for the deciphering of the brain mechanisms governing the reconsolidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggleton JP, Brown MW, Albasser MM (2012) Contrasting brain activity patterns for item recognition memory and associative recognition memory: insights from immediate-early gene functional imaging. Neuropsychologia 50:3141–3155

    Article  PubMed  Google Scholar 

  • Alberini CM (2011) The role of reconsolidation and the dynamic process of long-term memory formation and storage. Front Behav Neurosci 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Balderas I, Rodriguez-Ortiz CJ, Salgado-Tonda P, Chavez-Hurtado J, McGaugh JL, Bermudez-Rattoni F (2008) The consolidation of object and context recognition memory involve different regions of the temporal lobe. Learn Mem 15:618–624

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker GR, Warburton EC (2011) When is the hippocampus involved in recognition memory? J Neurosci 31:10721–10731

    Article  PubMed  CAS  Google Scholar 

  • Benice TS, Raber J (2008) Object recognition analysis in mice using nose-point digital video tracking. J Neurosci Methods 168:422–430

    Article  PubMed  CAS  Google Scholar 

  • Bertaina-Anglade V, Enjuanes E, Morillon D, Drieu la Rochelle C (2006) The object recognition task in rats and mice: a simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J Pharmacol Toxicol Methods 54:99–105

    Article  PubMed  CAS  Google Scholar 

  • Besnard A, Caboche J, Laroche S (2012) Reconsolidation of memory: a decade of debate. Prog Neurobiol 99:61–80

    Article  PubMed  Google Scholar 

  • Boccia MM, Baratti CM (1999) Effects of oxytocin and an oxytocin receptor antagonist on retention of a nose-poke habituation response in mice. Acta Physiol Pharmacol Ther Latinoam 49:155–160

    PubMed  CAS  Google Scholar 

  • Bozon B, Davis S, Laroche S (2003) A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40:695–701

    Article  PubMed  CAS  Google Scholar 

  • Brodkin J (1999) Assessing memory in mice using habituation of nose-poke responding. Behav Pharmacol 10:445–451

    Article  PubMed  CAS  Google Scholar 

  • Chambon C, Wegener N, Gravius A, Danysz W (2011) A new automated method to assess the rat recognition memory: validation of the method. Behav Brain Res 222:151–157

    Article  PubMed  Google Scholar 

  • Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31:673–704

    Article  PubMed  CAS  Google Scholar 

  • Dix SL, Aggleton JP (1999) Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition. Behav Brain Res 99:191–200

    Article  PubMed  CAS  Google Scholar 

  • Dodart JC, Mathis C, Ungerer A (1997) Scopolamine-induced deficits in a two-trial object recognition task in mice. Neuroreport 8:1173–1178

    Article  PubMed  CAS  Google Scholar 

  • Eacott MJ, Norman G (2004) Integrated memory for object, place, and context in rats: a possible model of episodic-like memory? J Neurosci 24:1948–1953

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215:244–254

    Article  PubMed  CAS  Google Scholar 

  • Finnie PS, Nader K (2012) The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 36:1667–1707

    Article  PubMed  Google Scholar 

  • Goeldner C, Reiss D, Wichmann J, Meziane H, Kieffer BL, Ouagazzal AM (2008) Nociceptin receptor impairs recognition memory via interaction with NMDA receptor-dependent mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in the hippocampus. J Neurosci 28:2190–2198

    Article  PubMed  CAS  Google Scholar 

  • Goeldner C, Reiss D, Wichmann J, Kieffer BL, Ouagazzal AM (2009) Activation of nociceptin opioid peptide (NOP) receptor impairs contextual fear learning in mice through glutamatergic mechanisms. Neurobiol Learn Mem 91:393–401

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt H, Fink F, Kastrup A, Haupts M, Eling P (2013) Cognitive profiles of patients with mild cognitive impairment or dementia in Alzheimer’s or Parkinson’s disease. Dement Geriatr Cogn Dis Extra 3:102–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffery KJ (2007) Integration of the sensory inputs to place cells: What, where, why, and how? Hippocampus 17:775–785

    Article  PubMed  Google Scholar 

  • Jeffery KJ, Anderson MI (2003) Dissociation of the geometric and contextual influences on place cells. Hippocampus 13:868–872

    Article  PubMed  Google Scholar 

  • Jones B, Bukoski E, Nadel L, Fellous JM (2012) Remaking memories: reconsolidation updates positively motivated spatial memory in rats. Learn Mem 19:91–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroes MC, Fernandez G (2012) Dynamic neural systems enable adaptive, flexible memories. Neurosci Biobehav Rev 36:1646–1666

    Article  PubMed  Google Scholar 

  • Langston RF, Wood ER (2010) Associative recognition and the hippocampus: differential effects of hippocampal lesions on object-place, object-context and object-place-context memory. Hippocampus 20:1139–1153

    Article  PubMed  Google Scholar 

  • Lee JLC (2009) Reconsolidation: maintaining memory relevance. Trends Neurosci 32:413–420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lyon L, Saksida LM, Bussey TJ (2012) Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models. Psychopharmacology (Berl) 220:647–672

    Article  CAS  Google Scholar 

  • McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK et al (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99

    Article  PubMed  CAS  Google Scholar 

  • McKenzie S, Eichenbaum H (2011) Consolidation and reconsolidation: two lives of memories? Neuron 71:224–233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morris RG, Inglis J, Ainge JA, Olverman HJ, Tulloch J, Dudai Y et al (2006) Memory reconsolidation: sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron 50:479–489

    Article  PubMed  CAS  Google Scholar 

  • Nadel L, Hupbach A, Gomez R, Newman-Smith K (2012) Memory formation, consolidation and transformation. Neurosci Biobehav Rev 36:1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Osan R, Tort AB, Amaral OB (2011) A mismatch-based model for memory reconsolidation and extinction in attractor networks. Plos One 6:e23113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pedreira ME, Maldonado H (2003) Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 38:863–869

    Article  PubMed  CAS  Google Scholar 

  • Pedreira ME, Perez-Cuesta LM, Maldonado H (2004) Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learn Mem 11:579–585

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters F, Villeneuve S, Belleville S (2013) Predicting progression to dementia in elderly subjects with mild cognitive impairment using both cognitive and neuroimaging predictors. J Alzheimers Dis 38:307–318

    Google Scholar 

  • Reiss D, Prinssen EP, Wichmann J, Kieffer BL, Ouagazzal AM (2012) The nociceptin orphanin FQ peptide receptor agonist, Ro64-6198, impairs recognition memory formation through interaction with glutamatergic but not cholinergic receptor antagonists. Neurobiol Learn Mem 98:254–260

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ortiz CJ, Bermudez-Rattoni F (2007) Memory reconsolidation or updating consolidation?

  • Rossato JI, Bevilaqua LR, Myskiw JC, Medina JH, Izquierdo I, Cammarota M (2007) On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn Mem 14:36–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutten K, Reneerkens OA, Hamers H, Sik A, McGregor IS, Prickaerts J et al (2008) Automated scoring of novel object recognition in rats. J Neurosci Methods 171:72–77

    Article  PubMed  CAS  Google Scholar 

  • Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 7:73–84

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, Wixted JT, Clark RE (2007) Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci 8:872–883

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suarez LD, Smal L, Delorenzi A (2010) Updating contextual information during consolidation as result of a new memory trace. Neurobiol Learn Mem 93:561–571

    Article  PubMed  Google Scholar 

  • Tronel S, Milekic MH, Alberini CM (2005) Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms. PLoS Biol 3:e293

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson DI, Langston RF, Schlesiger MI, Wagner M, Watanabe S, Ainge JA (2013a) Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus 23:352–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson DI, Watanabe S, Milner H, Ainge JA (2013b) Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory. Hippocampus

  • Winters BD, Tucci MC, DaCosta-Furtado M (2009) Older and stronger object memories are selectively destabilized by reactivation in the presence of new information. Learn Mem 16:545–553

    Article  PubMed  Google Scholar 

  • Winters BD, Saksida LM, Bussey TJ (2010) Implications of animal object memory research for human amnesia. Neuropsychologia 48:2251–2261

    Article  PubMed  Google Scholar 

  • Winters BD, Tucci MC, Jacklin DL, Reid JM, Newsome J (2011) On the dynamic nature of the engram: evidence for circuit-level reorganization of object memory traces following reactivation. J Neurosci 31:17719–17728

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM), the Université de Strasbourg (UDS). The authors thank Dr. Steve Brooks for the English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Mouttalib Ouagazzal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiss, D., Walter, O., Bourgoin, L. et al. New automated procedure to assess context recognition memory in mice. Psychopharmacology 231, 4337–4347 (2014). https://doi.org/10.1007/s00213-014-3577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3577-3

Keywords

Navigation