Skip to main content
Log in

11-trifluoromethyl-phenyldiazirinyl neurosteroid analogues: potent general anesthetics and photolabeling reagents for GABAA receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

While neurosteroids are well-described positive allosteric modulators of gamma-aminobutyric acid type A (GABAA) receptors, the binding sites that mediate these actions have not been definitively identified.

Objectives

This study was conducted to synthesize neurosteroid analogue photolabeling reagents that closely mimic the biological effects of endogenous neurosteroids and have photochemical properties that will facilitate their use as tools for identifying the binding sites for neurosteroids on GABAA receptors.

Results

Two neurosteroid analogues containing a trifluromethyl-phenyldiazirine group linked to the steroid C11 position were synthesized. These reagents, CW12 and CW14, are analogues of allopregnanolone (5α-reduced steroid) and pregnanolone (5β-reduced steroid), respectively. Both reagents were shown to have favorable photochemical properties with efficient insertion into the C–H bonds of cyclohexane. They also effectively replicated the actions of allopregnanolone and pregnanolone on GABAA receptor functions: they potentiated GABA-induced currents in Xenopus laevis oocytes transfected with α1β2γ2L subunits, modulated [35S]t-butylbicyclophosphorothionate binding in rat brain membranes, and were effective anesthetics in Xenopus tadpoles. Studies using [3H]CW12 and [3H]CW14 showed that these reagents covalently label GABAA receptors in both rat brain membranes and in a transformed human embryonal kidney (TSA) cells expressing either α1 and β2 subunits or β3 subunits of the GABAA receptor. Photolabeling of rat brain GABAA receptors was shown to be both concentration-dependent and stereospecific.

Conclusions

CW12 and CW14 have the appropriate photochemical and pharmacological properties for use as photolabeling reagents to identify specific neurosteroid-binding sites on GABAA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akk G, Bracamontes JR, Covey DF, Evers A, Dao T, Steinbach JH (2004) Neuroactive steroids have multiple actions to potentiate GABAA receptors. J Physiol 558:59–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akk G, Shu HJ, Wang C, Steinbach JH, Zorumski CF, Covey DF, Mennerick S (2005) Neurosteroid access to the GABAA receptor. J Neurosci 25:11605–11613

    Article  CAS  PubMed  Google Scholar 

  • Akk G, Covey DF, Evers AS, Steinbach JH, Zorumski CF, Mennerick S (2007) Mechanisms of neurosteroid interactions with GABA(A) receptors. Pharmacol Ther 116:35–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akk G, Li P, Bracamontes J, Reichert DE, Covey DF, Steinbach JH (2008) Mutations of the GABA-A receptor alpha1 subunit M1 domain reveal unexpected complexity for modulation by neuroactive steroids. Mol Pharmacol 74:614–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akk G, Covey DF, Evers AS, Mennerick S, Zorumski CF, Steinbach JH (2010) Kinetic and structural determinants for GABA-A receptor potentiation by neuroactive steroids. Curr Neuropharmacol 8:18–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atkinson RM, Davis B, Pratt MA, Sharpe HM, Tomich EG (1965) Action of some steroids on the central nervous system of the mouse: II. Pharmacology. J Med Chem 8:426–432

    Article  CAS  PubMed  Google Scholar 

  • Brunner J (1993) New photolabeling and crosslinking methods. Annu Rev Biochem 62:483–514

    Article  CAS  PubMed  Google Scholar 

  • Brunner J, Senn H, Richards FM (1980) 3-Trifluoromethyl-3-phenyldiazirine. A new carbene generating group for photolabeling reagents. J Biol Chem 255:3313–3318

    CAS  PubMed  Google Scholar 

  • Bureau MH, Olsen RW (1993) GABAA receptor subtypes: ligand binding heterogeneity demonstrated by photoaffinity labeling and autoradiography. J Neurochem 61:1479–1491

    Article  CAS  PubMed  Google Scholar 

  • Chen ZW, Chen LH, Akentieva N, Lichti CF, Darbandi R, Hastings R, Covey DF, Reichert DE, Townsend RR, Evers AS (2012a) A neurosteroid analogue photolabeling reagent labels the colchicine-binding site on tubulin: a mass spectrometric analysis. Electrophoresis 33:666–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZW, Manion B, Townsend RR, Reichert DE, Covey DF, Steinbach JH, Sieghart W, Fuchs K, Evers AS (2012b) Neurosteroid analog photolabeling of a site in the third transmembrane domain of the β3 subunit of the GABAA receptor. Mol Pharmacol 82:408–419

    Google Scholar 

  • Chiara DC, Jayakar SS, Zhou X, Zhang X, Savechenkov PY, Bruzik KS, Miller KW, Cohen JB (2013) Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 gamma-aminobutyric acid type A (GABAA) receptor. J Biol Chem 288:19343–19357

    Google Scholar 

  • Chisari M, Eisenman LN, Krishnan K, Bandyopadhyaya AK, Wang C, Taylor A, Benz A, Covey DF, Zorumski CF, Mennerick S (2009) The influence of neuroactive steroid lipophilicity on GABAA receptor modulation: evidence for a low-affinity interaction. J Neurophysiol 102:1254–1264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chisari M, Eisenman LN, Covey DF, Mennerick S, Zorumski CF (2010) The sticky issue of neurosteroids and GABA(A) receptors. Trends Neurosci 33:299–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Covey DF, Nathan D, Kalkbrenner M, Nilsson KR, Hu Y, Zorumski CF, Evers AS (2000) Enantioselectivity of pregnanolone-induced gamma-aminobutyric acid(A) receptor modulation and anesthesia. J Pharmacol Exp Ther 293:1009–1016

    CAS  PubMed  Google Scholar 

  • Darbandi-Tonkabon R, Hastings WR, Zeng CM, Akk G, Manion BD, Bracamontes JR, Steinbach JH, Mennerick SJ, Covey DF, Evers AS (2003) Photoaffinity labeling with a neuroactive steroid analogue. 6-azi-pregnanolone labels voltage-dependent anion channel-1 in rat brain. J Biol Chem 278:13196–13206

    Article  CAS  PubMed  Google Scholar 

  • Darbandi-Tonkabon R, Manion BD, Hastings WR, Craigen WJ, Akk G, Bracamontes JR, He Y, Sheiko TV, Steinbach JH, Mennerick SJ, Covey DF, Evers AS (2004) Neuroactive steroid interactions with voltage-dependent anion channels: lack of relationship to GABA(A) receptor modulation and anesthesia. J Pharmacol Exp Ther 308:502–511

    Article  CAS  PubMed  Google Scholar 

  • Evers AS, Chen ZW, Manion BD, Han M, Jiang X, Darbandi-Tonkabon R, Kable T, Bracamontes J, Zorumski CF, Mennerick S, Steinbach JH, Covey DF (2010) A synthetic 18-norsteroid distinguishes between two neuroactive steroid binding sites on GABAA receptors. J Pharmacol Exp Ther 333:404–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9:370–386

    Article  CAS  PubMed  Google Scholar 

  • Gyermek L, Soyka LF (1975) Steroid anesthetics. Anesthesiology 42:331–344

    Article  CAS  PubMed  Google Scholar 

  • Harrison NL, Majewska MD, Harrington JW, Barker JL (1987) Structure–activity relationships for steroid interaction with the γ-aminobutyric acid A receptor complex. J Pharmacol Exp Ther 241:346–353

    Google Scholar 

  • Hawkinson JE, Kimbrough CL, McCauley LD, Bolger MB, Lan NC, Gee KW (1994) The neuroactive steroid 3 alpha-hydroxy-5 beta-pregnan-20-one is a two-component modulator of ligand binding to the GABAA receptor. Eur J Pharmacol 269:157–163

    CAS  PubMed  Google Scholar 

  • Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489

    Article  CAS  PubMed  Google Scholar 

  • Hosie AM, Wilkins ME, Smart TG (2007) Neurosteroid binding sites on GABA(A) receptors. Pharmacol Ther 116:7–19

    Article  CAS  PubMed  Google Scholar 

  • Hosie AM, Clarke L, da Silva H, Smart TG (2009) Conserved site for neurosteroid modulation of GABAA receptors. Neuropharmacology 56:149–154

    Article  CAS  PubMed  Google Scholar 

  • Li P, Bracamontes J, Katona BW, Covey DF, Steinbach JH, Akk G (2007) Natural and enantiomeric etiocholanolone interact with distinct sites on the rat α1β2γ2L GABAA receptor. Mol Pharmacol 71:1582–1590

    Google Scholar 

  • Li P, Bandyopadhyaya AK, Covey DF, Steinbach JH, Akk G (2009) Hydrogen bonding between the 17b-substituent of a neurosteroid and the GABA(A) receptor is not obligatory for channel potentiation. Br J Pharmacol 158:1322–1329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pratt MB, Husain SS, Miller KW, Cohen JB (2000) Identification of sites of incorporation in the nicotinic acetylcholine receptor of a photoactivatible general anesthetic. J Biol Chem 275:29441–29451

    Article  CAS  PubMed  Google Scholar 

  • Selye H (1941) Anesthetic effect of steroid hormones. Proc Soc Exp Biol Med 46:116–121

    Article  CAS  Google Scholar 

  • Shu HJ, Zeng CM, Wang C, Covey DF, Zorumski CF, Mennerick S (2007) Cyclodextrins sequester neuroactive steroids and differentiate mechanisms that rate limit steroid actions. Br J Pharmacol 150:164–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasan S, Sapp DW, Tobin AJ, Olsen RW (1999) Biphasic modulation of GABA(A) receptor binding by steroids suggests functional correlates. Neurochem Res 24:1363–1372

    Article  CAS  PubMed  Google Scholar 

  • Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1:418–428

    Article  CAS  PubMed  Google Scholar 

  • Wittmer LL, Hu Y, Kalkbrenner M, Evers AS, Zorumski CF, Covey DF (1996) Enantioselectivity of steroid-induced gamma-aminobutyric acid A receptor modulation and anesthesia. Mol Pharmacol 50:1581–1586

    CAS  PubMed  Google Scholar 

  • Ziebell MR, Nirthanan S, Husain SS, Miller KW, Cohen JB (2004) Identification of binding sites in the nicotinic acetylcholine receptor for [3H]azietomidate, a photoactivatable general anesthetic. J Biol Chem 279:17640–17649

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant PO1-GM47969 from the National Institute of General Medical Sciences to A.S.E, D.F.C., J.H.S and C.F.Z and by grant MH099658 to S.M. from the National Institute of Mental Health. Washington University receives income and equity based on a license of related technology to Sage Therapeutics. D.F.C., C.F.Z. and A.S.E. have equity holdings in Sage Therapeutics, Inc. Sage Therapeutics, Inc. did not support this research or have any other role in the research or its conclusions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex S. Evers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(PDF 33 kb)

Supplementary Figure 2

(PDF 40 kb)

Supplementary Figure 3

(PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZW., Wang, C., Krishnan, K. et al. 11-trifluoromethyl-phenyldiazirinyl neurosteroid analogues: potent general anesthetics and photolabeling reagents for GABAA receptors. Psychopharmacology 231, 3479–3491 (2014). https://doi.org/10.1007/s00213-014-3568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3568-4

Keywords

Navigation