Skip to main content
Log in

Differential antidepressant-like response to lithium treatment between mouse strains: effects of sex, maternal care, and mixed genetic background

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Lithium is a mood stabilizer with both antidepressant and antimanic properties, however its mechanism of action is unclear. Identifying the genetic factors that influence lithium’s therapeutic actions will be an important step to assist in identifying such mechanisms. We previously reported that lithium treatment of male mice has antidepressant-like effects in the C57BL/6J strain but that such effects were absent in the BALB/cJ strain.

Objectives

This study aimed to assess the roles of both genetic and non-genetic factors such as sex and non-shared environmental conditions that may mediate differential behavioral responses to lithium.

Methods

Mice were treated with lithium for 10 days and then tested in the forced swim test followed by lithium discontinuation and retesting to assess effects of lithium withdrawal. We also assessed effects of sex and cross-fostering on lithium response between the C57BL/6J and BALB/cJ strains, and antidepressant-like effects of lithium in the hybrid CB6F1/J strain that is derived from C57BL/6J and BALB/cJ parental strains.

Results

Neither sex nor maternal care significantly influenced the differential antidepressant-like response to lithium. Withdrawal from lithium treatment reversed antidepressant-like effects in the C57BL/6J strain but had no effects in BALB/cJ mice. Lithium treatment did not result in antidepressant-like effects in the CB6F1/J strain.

Conclusions

Genetic factors are likely primarily responsible for differential antidepressant-like effects of lithium in the C57BL/6J and BALB/cJ strains. Future studies identifying such genetic factors may help to elucidate the neurobiological mechanisms of lithium’s therapeutic actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alda M, Grof P, Rouleau GA, Turecki G, Young LT (2005) Investigating responders to lithium prophylaxis as a strategy for mapping susceptibility genes for bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 29:1038–1045

    Article  PubMed  CAS  Google Scholar 

  • Anisman H, Hayley S, Kelly O, Borowski T, Merali Z (2001) Psychogenic, neurogenic, and systemic stressor effects on plasma corticosterone and behavior: mouse strain-dependent outcomes. Behav Neurosci 115:443–454

    Article  PubMed  CAS  Google Scholar 

  • Bai F, Li X, Clay M, Lindstrom T, Skolnick P (2001) Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav 70:187–192

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Tondo L (1998) Recurrence risk in bipolar manic-depressive disorders after discontinuing lithium maintenance treatment: an overview. Clin Drug Invest 15:337–351

    Article  CAS  Google Scholar 

  • Baldessarini RJ, Tondo L, Hennen J (2003) Lithium treatment and suicide risk in major affective disorders: update and new findings. J Clin Psychiatry 64(Suppl 5):44–52

    PubMed  CAS  Google Scholar 

  • Bauer M, Adli M, Bschor T, Pilhatsch M, Pfennig A, Sasse J, Schmid R, Lewitzka U (2010) Lithium’s emerging role in the treatment of refractory major depressive episodes: augmentation of antidepressants. Neuropsychobiology 62:36–42

    Article  PubMed  CAS  Google Scholar 

  • Bersudsky Y, Shaldubina A, Belmaker RH (2007) Lithium’s effect in forced-swim test is blood level dependent but not dependent on weight loss. Behav Pharmacol 18:77–80

    Article  PubMed  CAS  Google Scholar 

  • Brodkin ES (2007) BALB/c mice: low sociability and other phenotypes that may be relevant to autism. Behav Brain Res 176:53–65

    Article  PubMed  CAS  Google Scholar 

  • Calatayud F, Belzung C (2001) Emotional reactivity in mice, a case of nongenetic heredity? Physiology &amp. Behavior 74:355–362

    CAS  Google Scholar 

  • Caldji C, Diorio J, Anisman H, Meaney MJ (2004) Maternal behavior regulates benzodiazepine/GABAA receptor subunit expression in brain regions associated with fear in BALB/c and C57BL/6 Mice. Neuropsychopharmacology 29:1344–1352

    Article  PubMed  CAS  Google Scholar 

  • Can A, Blackwell RA, Piantadosi SC, Dao DT, O’Donnell KC, Gould TD (2011) Antidepressant-like responses to lithium in genetically diverse mouse strains. Genes Brain Behav 10:434–443

    Article  PubMed  CAS  Google Scholar 

  • Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD (2012) The Mouse Forced Swim Test. J Vis Exp. doi:10.3791/3638

  • Cervo L, Canetta A, Calcagno E, Burbassi S, Sacchetti G, Caccia S, Fracasso C, Albani D, Forloni G, Invernizzi RW (2005) Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression. J Neurosci 25:8165–8172

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132:107–124

    Article  PubMed  CAS  Google Scholar 

  • Crowley J, Blendy J, Lucki I (2005) Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology 183:257–264

    Article  PubMed  CAS  Google Scholar 

  • Crowley JJ, Brodkin ES, Blendy JA, Berrettini WH, Lucki I (2006) Pharmacogenomic evaluation of the antidepressant citalopram in the mouse tail suspension test. Neuropsychopharmacology 31:2433–2442

    Article  PubMed  CAS  Google Scholar 

  • David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 166:373–382

    CAS  Google Scholar 

  • Davis JM, Janicak PG, Hogan DM (1999) Mood stabilizers in the prevention of recurrent affective disorders: a meta-analysis. Acta Psychiatr Scand 100:406–417

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML, Mogilnicka E, Areso PM (1990) Antidepressant-like activity of the melatonin receptor antagonist, luzindole (N-0774), in the mouse behavioral despair test. Eur J Pharmacol 182:313–325

    Article  PubMed  CAS  Google Scholar 

  • Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Festing MFW (1974) Water Escape Learning in Mice. III. A diallel study. Behav Genet 4:111–124

    Article  PubMed  CAS  Google Scholar 

  • Francis DD, Szegda K, Campbell G, Martin WD, Insel TR (2003) Epigenetic sources of behavioral differences in mice. Nat Neurosci 6:445–446

    PubMed  CAS  Google Scholar 

  • Geddes JR, Burgess S, Hawton K, Jamison K, Goodwin GM (2004) Long-term lithium therapy for bipolar disorder: systematic review and meta-analysis of randomized controlled trials. Am J Psychiatry 161:217–222

    Article  PubMed  Google Scholar 

  • Gould TJ, Keith RA, Bhat RV (2001) Differential sensitivity to lithium’s reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behav Brain Res 118:95–105

    Article  PubMed  CAS  Google Scholar 

  • Gould TD, O’Donnell KC, Picchini AM, Manji HK (2007) Strain differences in lithium attenuation of d-amphetamine-induced hyperlocomotion: a mouse model for the genetics of clinical response to lithium. Neuropsychopharmacology 32:1321–1333

    Article  PubMed  CAS  Google Scholar 

  • Gould TD, O’Donnell KC, Dow ER, Du J, Chen G, Manji HK (2008) Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology 54:577–587

    Article  PubMed  CAS  Google Scholar 

  • Grof P, Duffy A, Cavazzoni P, Grof E, Garnham J, MacDougall M, O’Donovan C, Alda M (2002) Is response to prophylactic lithium a familial trait? J Clin Psychiatry 63:942–947

    Article  PubMed  CAS  Google Scholar 

  • Hamburger-Bar R, Robert M, Newman M, Belmaker RH (1986) Interstrain correlation between behavioural effects of lithium and effects on cortical cyclic AMP. Pharmacol Biochem Behav 24:9–13

    Article  PubMed  CAS  Google Scholar 

  • Hascoët M, Bourin M (2009) The forced swimming test in mice: a suitable model to study antidepressants. In: Gould TD (ed) Mood and anxiety related phenotypes in mice (neuromethods). Humana, New York, pp 85–118

    Chapter  Google Scholar 

  • Juetten J, Einat H (2012) Behavioral differences in black Swiss mice from separate colonies: implications for modeling domains of mania. Behav Pharmacol 23:211–214. doi:10.1097/FBP.0b013e32834f9e4e

    Article  PubMed  Google Scholar 

  • Kovacsics CE, Gould TD (2010) Shock-induced aggression in mice is modified by lithium. Pharmacol Biochem Behav 94:380–386

    Article  PubMed  CAS  Google Scholar 

  • Kovacsics CE, Gottesman, II, Gould TD (2009) Lithium’s Antisuicidal Efficacy: Elucidation of Neurobiological Targets Using Endophenotype Strategies. Annu Rev Pharmacol Toxicol 49:175–198

    Google Scholar 

  • Lepicard EM, Joubert C, Hagneau I, Perez-Diaz F, Chapouthier G (2000) Differences in anxiety-related behavior and response to diazepam in BALB/cByJ and C57BL/6J strains of mice. Pharmacol Biochem Behav 67:739–748

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Gershenfeld HK (2001) Genetic differences in the tail-suspension test and its relationship to imipramine response among 11 inbred strains of mice. Biol Psychiatry 49:575–581

    Article  PubMed  CAS  Google Scholar 

  • Logue SF, Owen EH, Rasmussen DL, Wehner JM (1997) Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition of startle in inbred mouse strains and F1 hybrids: implications of genetic background for single gene and quantitative trait loci analyses. Neuroscience 80:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322

    Article  CAS  Google Scholar 

  • Margo A, McMahon P (1982) Lithium withdrawal triggers psychosis. Brit J Psychiatry 141:407–410

    Article  CAS  Google Scholar 

  • McCarthy MJ, Leckband SG, Kelsoe JR (2010) Pharmacogenetics of lithium response in bipolar disorder. Pharmacogenomics 11:1439–1465

    Article  PubMed  CAS  Google Scholar 

  • Messeri P, Oliverio A, Bovet D (1972) Relations between avoidance and activity: a diallel study in mice. Behav Biol 7:733–742

    Article  PubMed  CAS  Google Scholar 

  • Moncrieff J (1995) Lithium revisited. A re-examination of the placebo-controlled trials of lithium prophylaxis in manic-depressive disorder. Br J Psychiatry 167:569–573

    Article  PubMed  CAS  Google Scholar 

  • Nomura S, Okada H, Naruse R, Yamaoka K (1991) The tail suspension test for screening antidepressant drugs: comparison of movement in ICR and NMRI mice. Jpn J Psychiatry Neurol 45:113–114

    PubMed  CAS  Google Scholar 

  • O’Leary OF, O’Connor RM, Cryan JF (2012) Lithium-induced effects on adult hippocampal neurogenesis are topographically segregated along the dorso-ventral axis of stressed mice. Neuropharmacology 62:247–255

    Article  PubMed  Google Scholar 

  • O’Leary OF, Zandy S, Dinan TG, Cryan JF (2013) Lithium augmentation of the effects of desipramine in a mouse model of treatment-resistant depression: a role for hippocampal cell proliferation. Neuroscience 228:36–46

    Article  PubMed  Google Scholar 

  • O'Neill HC, Schmitt MP, Stevens KE (2003) Lithium alters measures of auditory gating in two strains of mice. Biol Psychiatry 54:847–853

    Article  PubMed  Google Scholar 

  • Ong JC, Brody SA, Large CH, Geyer MA (2005) An investigation of the efficacy of mood stabilizers in rodent models of prepulse inhibition. J Pharmacol Exp Ther 315:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1978) “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 51:291–294

    Article  PubMed  CAS  Google Scholar 

  • Priebe K, Brake WG, Romeo RD, Sisti HM, Mueller A, McEwen BS, Francis DD (2005) Maternal influences on adult stress and anxiety-like behavior in C57BL/6J and BALB/cJ mice: a cross-fostering study. Dev Psychobiol 47:398–407

    Article  PubMed  CAS  Google Scholar 

  • Ripoll N, David DJP, Dailly E, Hascoët M, Bourin M (2003) Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res 143:193–200

    Article  PubMed  CAS  Google Scholar 

  • Royce JR, Yeudall LT, Poley W (1971) Diallel analysis of avoidance conditioning in inbred strains of mice. J Comp Physiol Psychol 76:353–358

    Article  PubMed  CAS  Google Scholar 

  • Sankoorikal GMV, Kaercher KA, Boon CJ, Lee JK, Brodkin ES (2006) A mouse model system for genetic analysis of sociability: C57BL/6J versus BALB/cJ inbred mouse strains. Biol Psychiatry 59:415–423

    Article  PubMed  CAS  Google Scholar 

  • Shoji H, Kato K (2006) Maternal behavior of primiparous females in inbred strains of mice: a detailed descriptive analysis. Physiol Behav 89:320–328

    Article  PubMed  CAS  Google Scholar 

  • Simpson J, Kelly JP (2012) An investigation of whether there are sex differences in certain behavioural and neurochemical parameters in the rat. Behav Brain Res 229(1):289–300. doi:10.1016/j.bbr.2011.12.036

    Article  PubMed  CAS  Google Scholar 

  • Smeraldi E, Petroccione A, Gasperini M, Macciardi F, Orsini A, Kidd KK (1984) Outcomes on lithium treatment as a tool for genetic studies in affective disorders. J Affect Disord 6:139–151

    Article  PubMed  CAS  Google Scholar 

  • Smoller JW, Finn CT (2003) Family, twin, and adoption studies of bipolar disorder. Am J Med Genet 123C:48–58

    Article  PubMed  Google Scholar 

  • Stiedl O, Radulovic J, Lohmann R, Birkenfeld K, Palve M, Kammermeier J, Sananbenesi F, Spiess J (1999) Strain and substrain differences in context- and tone-dependent fear conditioning of inbred mice. Behav Brain Res 104:1–12

    Article  PubMed  CAS  Google Scholar 

  • Suppes T, Baldessarini RJ, Faedda GL, Tohen M (1991) Risk of recurrence following discontinuation of lithium treatment in bipolar disorder. Arch Gen Psychiatry 48:1082–1088

    Article  PubMed  CAS  Google Scholar 

  • Tondo L, Hennen J, Baldessarini RJ (2001) Lower suicide risk with long-term lithium treatment in major affective illness: a meta-analysis. Acta Psychiatr Scand 104:163–172

    Article  PubMed  CAS  Google Scholar 

  • van der Heyden JA, Molewijk E, Olivier B (1987) Strain differences in response to drugs in the tail suspension test for antidepressant activity. Psychopharmacology (Berl) 92:127–130

    Article  Google Scholar 

  • Watanabe S, Ishino H, Otsuki S (1975) Double-blind comparison of lithium carbonate and imipramine in treatment of depression. Arch Gen Psychiatry 32:659–668

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants MH084043 and MH091816 to TDG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd D. Gould.

Electronic supplementary material

ESM 1

(PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Can, A., Piantadosi, S.C. & Gould, T.D. Differential antidepressant-like response to lithium treatment between mouse strains: effects of sex, maternal care, and mixed genetic background. Psychopharmacology 228, 411–418 (2013). https://doi.org/10.1007/s00213-013-3045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3045-5

Keywords

Navigation