Skip to main content
Log in

Nitric oxide modulates the discharge rate of basal forebrain neurons

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

During prolonged wakefulness, the concentrations of nitric oxide (NO) and adenosine (AD) increase in the basal forebrain (BF). AD inhibits neuronal activity via adenosine (A1) receptors, thus providing a potential mechanism for sleep facilitation. Although NO in the BF increases adenosine and promotes sleep, it is not clear whether the sleep promotion by NO is mediated through adenosine increase, or NO independently of adenosine could modulate sleep.

Objective

The objective of the study was to clarify whether NO modulates the discharge rate of BF neurons and whether this effect is mediated via AD.

Materials and methods

We measured the discharge rates of BF neurons in anesthetized rats during microdialysis infusion of NO donor alone or in combination with A1 receptor antagonist, 8-cyclopentyl-1,3-dimethylxanthine.

Results

NO dose dependently modulated the discharge rate of BF neurons. NO donor (0.5 mM) increased the discharge rates in 48% of neurons and decreased it in 22%. A 1-mM dose decreased it in 55% and increased in 18%. Tactile stimulus affected the discharge rates of most neurons: 60% increased (stimulus-on) it and 14% decreased it (stimulus-off). A 1-mM NO donor predominantly inhibited neurons of both stimulus related types. A small proportion of stimulus-on (23%) neurons but none of the stimulus-off neurons were activated by NO donor. The blockade of A1 receptors partly prevented the inhibitory effect of NO on most of the neurons. This response was more prominent in stimulus-on than in stimulus-off neurons.

Conclusion

NO modulates the BF neuronal discharge rates in a dose-dependent manner. The inhibitory effect is partly mediated via adenosine A1 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AD:

adenosine

BF:

basal forebrain

BL:

base line

CPT:

8-Cyclopentyl-1,3-dimethylxanthine

CSF:

artificial cerebrospinal fluid

EEG:

electroencephalogram

fEPSP:

focal excitatory post-synaptic potential

GABA:

gamma-aminobutyric acid

GMP:

guanidine mono-phosphate

HDB:

horizontal diagonal band of Broca

HPLC:

high-performance liquid chromatography

MCPO:

magnocellular preoptic nucleus

NO:

nitric oxide

NOC-18:

(DETA/NO); 2,2’-(hydroxynitrosohydrazino)bis-ethanamine

eNOS, nNOS, and iNOS:

endothelial, neuronal, and inducible nitric oxide synthetase, respectively

REM:

rapid eye movement

SD:

standard deviation

SI:

substantia innominata

References

  • Alam MN, Szymusiak R, Gong H, King J, McGinty D (1999) Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis. J Physiol 3:679–690

    Article  Google Scholar 

  • Arrigoni E, Rosenberg PA (2006b) Nitric oxide-induced adenosine inhibition of hippocampal synaptic transmission depends on adenosine kinase inhibition and is cyclic GMP independent. Eur J Neurosci 24(9):2471–2480

    Article  PubMed  Google Scholar 

  • Arrigoni E, Chamberlin NL, Saper CB, McCarley RW (2006a) Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience 140:403–413

    Article  PubMed  CAS  Google Scholar 

  • Beltrán B, Orsi A, Clementi E, Moncada S (2000) Oxidative stress and S-nitrosylation of proteins in cells. Br J Pharmacol 129(5):953–960

    Article  PubMed  Google Scholar 

  • Biel M, Sautter A, Ludwig A, Hofmann F, Zong X (1998) Cyclic nucleotide-gated channels-mediators of NO:cGMP-regulated processes. Naunyn Schmiedebergs Arch Pharmacol 358(1):140–144

    Article  PubMed  CAS  Google Scholar 

  • Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131

    Article  PubMed  CAS  Google Scholar 

  • Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368(6474):850–853

    Article  PubMed  CAS  Google Scholar 

  • Broillet MC (1999) S-nitrosylation of proteins. Cell Mol Life Sci 55(8–9):1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Broome MR, Collingridge GL, Irving AJ (1994) Activation of the NO-cGMP signalling pathway depresses hippocampal synaptic transmission through an adenosine receptor-dependent mechanism. Neuropharmacology 33(11):1511–1513

    Article  PubMed  CAS  Google Scholar 

  • Brorson JR, Schumacker PT, Zhang H (1999) Nitric oxide acutely inhibits neuronal energy production. The Committees on Neurobiology and Cell Physiology. J Neurosci 19(1):147–158

    PubMed  CAS  Google Scholar 

  • Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29(4):331–346

    PubMed  CAS  Google Scholar 

  • Buchholzer ML, Klein J (2002) NMDA-induced acetylcholine release in mouse striatum: role of NO synthase isoforms. J Neurochem 82(6):1558–1560

    Article  PubMed  CAS  Google Scholar 

  • Burlet S, Cespuglio R (1997) Voltammetric detection of nitric oxide (NO) in the rat brain: its variations throughout the sleep–wake cycle. Neurosci Lett 226(2):131–135

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8:4007–4026

    PubMed  CAS  Google Scholar 

  • Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108(4):277–293

    Article  PubMed  CAS  Google Scholar 

  • Cawley SM, Sawyer CL, Brunelle KF, van der Vliet A, Dostmann WR (2007) Nitric oxide-evoked transient kinetics of cyclic GMP in vascular smooth muscle cells. Cell Signal 19(5):1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Cespuglio R, Burlet S, Marinesco S, Robert F, Jouvet M (1996) Voltametric detection of cerebral NO in rats. Variations of the signal throughout the sleep–wakefulness cycle C R Acad Sci III. 319(3) abstract

  • Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608

    PubMed  CAS  Google Scholar 

  • Desvignes C, Robert F, Vachette C, Chouvet G, Cespuglio R, Renaud B, Lambás-Señas L (1997) Monitoring nitric oxide (NO) in rat locus coeruleus: differential effects of NO synthase inhibitors. Neuroreport 8(6):1321–1325

    Article  PubMed  CAS  Google Scholar 

  • Detari L, Vanderwolf CH (1987) Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anaesthetized rats. Brain Res 437:1–8

    Article  PubMed  CAS  Google Scholar 

  • Detari L, Rasmusson DD, Semba K (1997a) Phasic relationship between the activity of basal forebrain neurons and cortical EEG in urethane-anesthetized rat. Brain Res 759:112–121

    Article  PubMed  CAS  Google Scholar 

  • Detari L, Semba K, Rasmusson DD (1997b) Responses of cortical EEG-related basal forebrain neurons to brainstem and sensory stimulation in urethane-anaesthetized rats. Eur J Neurosci 9:153–161

    Article  Google Scholar 

  • Duque A, Balatoni B, Detari L, Zaborszky L (2000) EEG correlation of the discharge properties of identified neurons in the basal forebrain. J Neurophysiol 84(3):1627–1635

    PubMed  CAS  Google Scholar 

  • Duque A, Tepper JM, Detari L, Ascoli GA, Zaborszky L (2007) Morphological characterization of electrophysiologically and immunohistochemically identified basal forebrain cholinergic and neuropeptide Y-containing neurons. Brain Struct Funct 212(1):55–73

    Article  PubMed  Google Scholar 

  • Esplugues JV (2002) NO as a signaling molecule in the nervous system. Br J Pharmacol 135(5):1079–1095

    Article  PubMed  CAS  Google Scholar 

  • Fagni L, Olivier M, Lafon-Cazal M, Bockaert J (1995) Involvement of divalent ions in the nitric oxide-induced blockade of N-methyl-D-aspartate receptors in cerebellar granule cells. Mol Pharmacol 47(6):1239–1247

    PubMed  CAS  Google Scholar 

  • Gautier-Sauvigné S, Colas D, Parmantier P, Clement P, Gharib A, Sarda N, Cespuglio R (2005) Nitric oxide and sleep. Sleep Med Rev 9(2):101–113

    Article  PubMed  Google Scholar 

  • Getting SJ, Segieth J, Ahmad S, Biggs CS, Whitton PS (1996) Biphasic modulation of GABA release by nitric oxide in the hippocampus of freely moving rats in vivo. Brain Res 717:196–199

    Article  PubMed  CAS  Google Scholar 

  • Gritti I, Mainville L, Mancia M, Jones BE (1997) GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol 383(2):163–177

    Article  PubMed  CAS  Google Scholar 

  • Guix FX, Uribesalgo I, Coma M, Muñoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76(2):126–152

    Article  PubMed  CAS  Google Scholar 

  • Hoyt KR, Tang LH, Aizenman E, Reynolds IJ (1992) Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Brain Res 592(1–2):310–316

    Article  PubMed  CAS  Google Scholar 

  • Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26(11):578–586

    Article  PubMed  CAS  Google Scholar 

  • Kaehler ST, Singewald N, Sinner C, Philippu A (1999) Nitric oxide modulates the release of serotonin in the rat hypothalamus. Brain Res 835(2):346–349

    Article  PubMed  CAS  Google Scholar 

  • Kalinchuk AV, Lu Y, Stenberg D, Rosenberg PA, Porkka-Heiskanen T (2006a) Nitric oxide production in the basal forebrain is required for recovery sleep. J Neurochem 99:483–498

    Article  PubMed  CAS  Google Scholar 

  • Kalinchuk AV, Stenberg D, Rosenberg PA, Porkka-Heiskanen T (2006b) Inducible and neuronal NOS have complementary roles in recovery sleep induction. Eur J Neurosci 24:1443–1456

    Article  PubMed  CAS  Google Scholar 

  • Kapás L, Fang J, Krueger JM (1994) Inhibition of nitric oxide synthesis inhibits rat sleep. Brain Res 664(1–2):189–196

    Article  PubMed  Google Scholar 

  • Kodama T, Koyama Y (2006) Nitric oxide from the laterodorsal tegmental neurons: its possible retrograde modulation on norepinephrine release from the axon terminal of the locus coeruleus neurons. Neuroscience 38(1):245–256

    Article  CAS  Google Scholar 

  • Lee MG, Manns ID, Alonso A, Jones BE (2004) Sleep–wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats. J Neurophysiol 92:1182–1198

    Article  PubMed  Google Scholar 

  • Lee MG, Hassani OK, Alonso A, Jones BE (2005) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci 25:4365–4369

    Article  PubMed  CAS  Google Scholar 

  • Leonard, Michaelis, Mitchell (2001) Activity-dependent nitric oxide concentration dynamics in the laterodorsal tegmental nucleus in vitro. J Neurophysiol 86(5):2159–2172

    PubMed  CAS  Google Scholar 

  • Li Z, Chapleau MW, Bates JN, Bielefeldt K, Lee HC, Abboud FM (1998) Nitric oxide as an autocrine regulator of sodium currents in baroreceptor neurons. Neuron 20(5):1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Manns ID, Alonso A, Jones BE (2000a) Discharge properties of juxtacellularly labeled and immunohistochemically identified cholinergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20:1505–1518

    PubMed  CAS  Google Scholar 

  • Manns ID, Alonso A, Jones BE (2000b) Discharge profiles of juxtacellularly labeled and immunohistochemically identified GABAergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20:9252–9263

    PubMed  CAS  Google Scholar 

  • Manns ID, Mainville L, Jones BE (2001) Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. Neuroscience 107:249–263

    Article  PubMed  CAS  Google Scholar 

  • Manns ID, Alonso A, Jones BE (2003) Rhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells. J Neurophysiol 89:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Bolaños JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97(6):1676–1689

    Article  PubMed  CAS  Google Scholar 

  • Nunez A (1996) Unit activity of rat basal forebrain neurons: relationship to cortical activity. Neuroscience 72(3):757–766

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 2nd edn. Academic, San Diego

    Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    Article  PubMed  CAS  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99(3):507–517

    Article  PubMed  CAS  Google Scholar 

  • Portas CM, Thakkar M, Rainnie DG, Greene RW, McCarley RW (1997) Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 79(1):225–235

    Article  PubMed  CAS  Google Scholar 

  • Poteser M, Romanin C, Schreibmayer W, Mayer B, Groschner K (2001) S-nitrosation controls gating and conductance of the alpha 1 subunit of class C L-type Ca(2+) channels. J Biol Chem 276(18):14797–14803

    Article  PubMed  CAS  Google Scholar 

  • Prast H, Lamberti C, Fischer H, Tran MH, Philippu A (1996) Nitric oxide influences the release of histamine and glutamate in the rat hypothalamus. Naunyn Schmiedebergs Arch Pharmacol 354(6):731–735

    Article  PubMed  CAS  Google Scholar 

  • Prast H, Tran MH, Fischer H, Philippu A (1998) Nitric oxide-induced release of acetylcholine in the nucleus accumbens: role of cyclic GMP, glutamate, and GABA. J Neurochem 71(1):266–273

    Article  PubMed  CAS  Google Scholar 

  • Radulovacki M (1985) Role of adenosine in sleep in rats. Rev Clin Basic Pharm 5(3–4):327–339

    PubMed  CAS  Google Scholar 

  • Renganathan M, Cummins TR, Waxman SG (2002) Nitric oxide blocks fast, slow, and persistent Na+ channels in C-type DRG neurons by S-nitrosylation. J Neurophysiol 87(2):761–775

    PubMed  CAS  Google Scholar 

  • Robello M, Amico C, Bucossi G, Cupello A, Rapallino MV, Thellung S (1996) Nitric oxide and GABAA receptor function in the rat cerebral cortex and cerebellar granule cells. Neuroscience 74(1):99–105

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg PA, Li Y, Le M, Zhang Y (2000) Nitric oxide-stimulated increase in extracellular adenosine accumulation in rat forebrain neurons in culture is associated with ATP hydrolysis and inhibition of adenosine kinase activity. J Neurosci 20(16):6294–6301

    PubMed  CAS  Google Scholar 

  • Semba K (2000) Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 115(2):117–141

    Article  PubMed  CAS  Google Scholar 

  • Schwierin B, Borbély AA, Tobler I (1996) Effects of N6-cyclopentyladenosine and caffeine on sleep regulation in the rat. Eur J Pharmacol 300(3):163–171

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Amzica F, Nuñez A (1993) Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. J Neurophysiol 70(4):1385–1400

    PubMed  CAS  Google Scholar 

  • Szymusiak R (1995) Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation. Sleep 18(6):478–500

    PubMed  CAS  Google Scholar 

  • Szymusiak R, McGinty D (1986) Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res 370:82–92

    Article  PubMed  CAS  Google Scholar 

  • Thakkar MM, Delgiacco RA, Strecker RE, McCarley RW (2003) Adenosinergic inhibition of basal forebrain wakefulness-active neurons: a simultaneous unit recording and microdialysis study in freely behaving cats. Neuroscience 122(4):1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Duque A (2003) Sleep–wake mechanisms and basal forebrain circuitry. Front Biosci 8:1146–1169

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the European Union grants MCRTN-CT-2004-512362 and LSHM-CT-2005-518189 and the Academy of Finland

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarja Porkka-Heiskanen.

Electronic supplementary material

Below is the link to the electronic supplementary material

Table 1

Time-dependent decrease in the BF adenosine concentration after probe insertion (n = 4); mean ± SD (DOC 14.6 KB)

Fig. 4g

The discharge rate (spikes/10 s) of single neurons, which were phasically increased during early period of NO-donor infusion but later decreased to the level lower then during the BL. The last two diagrams are exceptions, where discharge rate was, respectively, not different or higher as compared to BL level (GIF 8.67 MB).

High resolution image file (TIFF 4.61 MB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostin, A., Stenberg, D., Kalinchuk, A.V. et al. Nitric oxide modulates the discharge rate of basal forebrain neurons. Psychopharmacology 201, 147–160 (2008). https://doi.org/10.1007/s00213-008-1257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1257-x

Keywords

Navigation