Skip to main content
Log in

Efficacy of caffeine and modafinil in counteracting sleep deprivation in the marmoset monkey

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background and purpose

The effects of sleep deprivation are a burden in our 24-h society. The use of wake-promoting compounds could improve the performance in situations where sleep cannot be allowed. In this study, the efficacy of the wake-promoting compounds, modafinil and caffeine, in counteracting the effects of 24-h sleep deprivation in the marmoset monkey were tested. As caffeine is habitually used, the efficacy of both compounds after short- and long-term use was investigated.

Materials and methods

After a normal active day, the animals were kept awake and received wake-promoting compounds during the whole night. Three times during the sleep-deprived night, putative fatigue was assessed with an activity test and the vigilance and ability to execute a task was assessed with a hand–eye coordination (HEC) task.

Results

Both compounds were able to counteract to some extent the decline in performance. Modafinil was able to keep the activity at baseline performance, but performance on the HEC task was not improved. Caffeine was able to keep performance in the HEC task at a level just below daytime level but was not able to keep activity at daytime levels during the last part of the night. Caffeine and modafinil administration for 2 weeks showed a comparable effect on activity as acute use. The performance on the HEC task was similar after chronic caffeine and improved after chronic modafinil.

Conclusion

It is therefore concluded that modafinil and caffeine were both able to postpone or prevent the decline in vigilance and psychomotor performance and increase in fatigue induced by sleep deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bastuji H, Jouvet M (1988) Successful treatment of idiopathic hypersomnia and narcolepsy with modafinil. Prog Neuropsychopharmacol Biol Psychiatry 12:695–700

    Article  PubMed  CAS  Google Scholar 

  • Bonnet MH, Balkin TJ, Dinges DF, Roehrs T, Rogers NL, Wesensten NJ (2005) The use of stimulants to modify performance during sleep loss: a review by the sleep deprivation and Stimulant Task Force of the American Academy of Sleep Medicine. Sleep 28:1163–1187

    PubMed  Google Scholar 

  • Blatter K, Graw P, Münch M, Knoblauch V, Wirz-Justice A, Cajochen C (2006) Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions. Behav Brain Res 168:312–317

    Article  PubMed  Google Scholar 

  • Caldwell JA, Caldwell JL (1997) An in-flight investigation of the efficacy of dextroamphetamine for sustaining helicopter pilot performance. Aviat Space Environ Med 68(12):1073–1080

    PubMed  CAS  Google Scholar 

  • Caldwell JA, Caldwell JL (2005) Fatigue in military aviation: An overview of U.S. militairy-approved pharmacological countermeasures. Aviat Space Environ Med 76(7):C39–C51

    PubMed  Google Scholar 

  • Caldwell JA, Caldwell JL, Smith JK, Brown DL (2004) Modafinil’s effects on simulator performance and mood in pilots during 37 h without sleep. Aviat Space Environ Med 68:1073–1080

    Google Scholar 

  • Crofts HS, Wilson S, Muggleton NG, Nutt DJ, Scott EA, Pearce PC (2001) Investigation of the sleep electrocorticogram of the common marmoset (Callithrix jacchus) using radiotelemetry. Clin Neurophysiol 112:2265–2273

    Article  PubMed  CAS  Google Scholar 

  • Emonson DL, Vanderbeek RD (1995) The use of amphetamines in U.S. Air Force tactical operations during Desert Shield and Storm. Aviat Environ Med 66(3):260–263

    CAS  Google Scholar 

  • Erkert HG (1989) Characteristics of the circadian activity rhythm in common marmosets (Callithrix j. jacchus). Am J Primatol 17:271–286

    Article  Google Scholar 

  • Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Folkard S, Lombardi DA, Tucker PT (2003) Shiftwork: safety, sleepiness and sleep. Ind Health 43:20–23

    Article  Google Scholar 

  • Howell LL (1995) Effects of caffeine on ventilation during acute and chronic nicotine administration in rhesus monkeys. J Pharmacol Exp Ther 273:1085–1094

    PubMed  CAS  Google Scholar 

  • Lagarde D, Batejat D, Van Beers P, Sarafian D, Pradella S (1995) Interest of modafinil, a new psychostimulant, during a sixty-hour sleep deprivation experiment. Fundam Clin Pharmacol 9:271–279

    Article  PubMed  CAS  Google Scholar 

  • Lyons TJ, French J (1991) Modafinil: the unique properties of a new stimulant. Aviat Space Environ Med 62:432–435

    PubMed  CAS  Google Scholar 

  • McLellan TM, Bell DG, Kamimori GH (2004) Caffeine improves physical performance during 24 h of active wakefulness. Aviat Space Environ Med 75:666–672

    PubMed  CAS  Google Scholar 

  • McLellan TM, Kamimori GH, Bell DG, Smith IF, Johnson D, Belenky G (2005) Caffeine maintains vigilance and marksmanship in simulated urban operations with sleep deprivation. Aviat Space Environ Med 76:39–45

    PubMed  CAS  Google Scholar 

  • Mitler MM, Harsh J, Hirshkowitz M Guilleminault C (2000) Long-term efficacy and safety of modafinil for the treatment of excessive daytime sleepiness associated with narcolepsy. Sleep Med 1:231–243

    Article  PubMed  Google Scholar 

  • Philippens IHCHM, Melchers BPC, Roeling TAP, Bruijnzeel PLB (2000) Behavioral test systems in marmoset monkeys. Behav Res Methods Instrum Comput 32(1):173–179

    PubMed  CAS  Google Scholar 

  • Philippens IH, Kersten CJ, Vanwersch RA, Strijkstra AM (2004) Sleep and sleep EEG spectra in Marmoset monkeys. Sleep–Wake Res Neth 15:49–51

    Google Scholar 

  • Porrino LJ, Daunais JB, Rogers GA, Hampson RE, Deadwyler SA (2005) Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717) in nonhuman primates. PloS Biol 3(9):1639–1652

    Article  CAS  Google Scholar 

  • Randall DC, Shneerson JM, Plaha KK, File SE (2003) Modafinil affects mood, but not cognition, in healthy young volunteers. Hum Psychopharmacol 18:163–173

    Article  PubMed  CAS  Google Scholar 

  • Robertson P Jr., Hellriegel ET (2003) Clinical pharmacokinetic profile of modafinil. Clin Pharmacokinet 42:123–137

    Article  PubMed  CAS  Google Scholar 

  • Rogers NL, Dorrian J, Dinges DF (2003) Sleep, waking and neurobehavioural performance. Front Biosci 8:1056–1067

    Article  Google Scholar 

  • Simon P, Hemet C, Ramassamy C, Costentin J (1995) Non-amphetaminic mechanism of stimulant locomotor effect of modafinil in mice. Eur Neuropsychopharmacol 5:509–514

    Article  PubMed  CAS  Google Scholar 

  • Van Vliet SAM, Jongsma MJ, Vanwersch RAP, Olivier B, Philippens IHCHM (2006) Behavioral effects of modafinil in marmoset monkeys. Psychopharmacol 185(4):433–440

    Article  CAS  Google Scholar 

  • Ward CP, Harsh JR, York KM, Stewart KL, McCoy JG (2004) Modafinil facilitates performance on a delayed nonmatching to position swim task in rats. Pharmacol Biochem Behav 78:735–741

    Article  PubMed  CAS  Google Scholar 

  • Wesensten NJ, Belenky G, Kautz MA, Thorne DR, Reichardt RM, Balkin TJ (2002) Maintaining alertness and performance during sleep deprivation: modafinil versus caffeine. Psychopharmacology 159:238–247

    Article  PubMed  CAS  Google Scholar 

  • Wesensten NJ, Belenky G, Thorne DR, Kautz MA, Balkin TJ (2004) Modafinil vs. caffeine: effects on fatigue during sleep deprivation. Aviat Space Environ Med 75:520–525

    PubMed  CAS  Google Scholar 

  • Wesensten NJ, Killgore WD, Balkin TJ (2005) Performance and alertness effects of caffeine, dextroamphetamine and modafinil during sleep deprivation. J Sleep Res 14(3):255–266

    Article  PubMed  Google Scholar 

  • Wolthuis OL, Groen B, Philippens IH (1994) A simple automated test to measure exploratory and motor activity of marmosets. Pharmacol Biochem Behav 47:879–881

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Dutch Ministry of Defence. The views, opinions, and/or findings contained in this paper are those of the authors and should not be considered to reflect the views of the Dutch Ministry of Defence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid H. C. H. M. Philippens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Vliet, S.A.M., Jongsma, M.J., Vanwersch, R.A. et al. Efficacy of caffeine and modafinil in counteracting sleep deprivation in the marmoset monkey. Psychopharmacology 197, 59–66 (2008). https://doi.org/10.1007/s00213-007-1005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-1005-7

Keywords

Navigation