Skip to main content
Log in

Anti-conflict effects of benzodiazepines in rhesus monkeys: relationship with therapeutic doses in humans and role of GABAA receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and Objectives

Conflict procedures are used to study mechanisms underlying the anxiolytic effects of benzodiazepines (BZs). We established a conflict procedure with rhesus monkeys in order to examine the role of GABAA receptors in the anxiolytic-like effects of BZs.

Methods

Four rhesus monkeys responded under a two-component multiple schedule in which responding was maintained under a fixed-ratio schedule of food delivery in the absence (non-suppressed responding) and presence (suppressed responding) of response-contingent electric shock.

Results

Conventional BZs (alprazolam, flunitrazepam, clonazepam, nitrazepam, lorazepam, bromazepam, diazepam, flurazepam, clorazepate, chlordiazepoxide) engendered increases in the average rates of suppressed responding at low to intermediate doses and decreased the average rates of non-suppressed responding at higher doses. Positive correlations were observed when the therapeutic potencies of BZs in humans were compared with potencies to increase the rates of suppressed responding (R 2=0.83) or decrease the rates of non-suppressed responding (R 2=0.60). The 5-HT1A agonist buspirone increased the rates of suppressed responding, although the effects were modest, whereas the opioid morphine lacked anti-conflict effects. The BZ antagonist flumazenil also modestly increased the rates of suppressed responding. A relatively low dose of flumazenil enhanced, while a high dose blocked, alprazolam’s anti-conflict effects. Compounds selective for α1 subunit-containing GABAA receptors (zolpidem, zaleplon, CL218,872) engendered relatively weak increases in the rates of suppressed responding.

Conclusions

A rhesus monkey conflict procedure was established with predictive validity for therapeutic doses in people and provided evidence that anxiolytic-like effects of BZs can occur with relatively low intrinsic efficacy at GABAA receptors and are reduced by α1GABAA receptor selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acri JB, Wong G, Witkin JM (1995) Stereospecific transduction of behavioral effects via diazepam-insensitive GABAA receptors. Eur J Pharmacol 278:213–223

    Article  PubMed  CAS  Google Scholar 

  • Ashton H (1994) Guidelines for the rational use of benzodiazepines, when and what to use. Drugs 48:25–40

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Hutson PH, Collinson N, Marshall G, Bentley G, Moyes C, Cook SM, Collins I, Wafford K, McKernan RM, Dawson GR (2005) Anxiogenic properties of an inverse agonist selective for α3 subunit-containing GABAA receptors. Brit J Pharmacol 144:357–366

    Article  CAS  Google Scholar 

  • Barrett JE, Brady LS, Witkin JM (1985) Behavioral studies with anxiolytic drugs. I. Interactions of the benzodiazepine antagonist Ro 15-1788 with chlordiazepoxide, pentobarbital and ethanol. J Pharmacol Exp Ther 233:554–559

    PubMed  CAS  Google Scholar 

  • Belzung C, Le Guisquet, Crestani F (2000) Flumazenil induces benzodiazepine partial agonist-like effects in BALB/c but not C57BL/6 mice. Psychopharmacology 148:24–32

    Article  PubMed  CAS  Google Scholar 

  • Carey G, Spealman RD (1998) Models of neurological disease (substance abuse): self-administration in monkeys, In: Enna S, Williams M, Ferkany J, Kenakin T, Portsolt R, Sullivan J (eds) Current protocols in pharmacology, Wiley, New York, pp10.5.1–10.5.15

    Google Scholar 

  • Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C, Smith A, Out FM, Howell O, Atack JR, McKernan RM, Seabrook GR, Dawson GR, Whiting PJ, Rosahl TW (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J Neurosci 22:5572–5580

    PubMed  CAS  Google Scholar 

  • Cook L, Davidson AB (1973) Effects of behaviorally active drugs in a conflict-punishment procedure in rats. In: Garattini S, Mussini E, Randall LO (eds) The benzodiazepines. Raven, New York, pp327–345

    Google Scholar 

  • Crestani F, Keist R, Fritschy J-M, Benke D, Vogt K, Prut L, Blüthmann H, Möhler H, Rudolph U (2002) Trace fear conditioning involves hippocampal α5 GABAA receptors. Proc Natl Acad Sci USA 99:8980–8985

    Article  PubMed  CAS  Google Scholar 

  • Dündar Y, Dodd S, Strobl J, Boland A, Dickson R, Walley T (2004) Comparative efficacy of newer hypnotic drugs for the short-term management of insomnia: a systematic review and meta-analysis. Hum Psychopharmacol Clin Exp 19:305–322

    Article  CAS  Google Scholar 

  • Duka T, Ackenheil M, Noderer J, Doenicke A, Dorow R (1986) Changes in noradrenaline plasma levels and behavioural responses induced by benzodiazepine agonists with the benzodiazepine antagonist Ro 15-1788. Psychopharmacology 90:351–357

    Article  PubMed  CAS  Google Scholar 

  • Feldon J, Lerner T, Levin D, Myslobodsky M (1983) A behavioral examination of convulsant benzodiazepine and GABA antagonist, Ro 5-3663, and benzodiazepine-receptor antagonist Ro 15-1788. Pharmacol Biochem Behav 19:39–41

    Article  PubMed  CAS  Google Scholar 

  • Geller I, Seifter J (1960) The effects of meprobamate, barbiturate, d-amphetamine and promazine on experimentally-induced conflict in the rat. Psychopharmacologia 1:482–492

    Article  CAS  Google Scholar 

  • Gerak LR, France CP (1999) Discriminative stimulus effects of flumazenil in untreated and in diazepam-treated rhesus monkeys. Psychopharmacology 146:252–261

    Article  PubMed  CAS  Google Scholar 

  • Glowa JR, Skolnick P, Paul SM (1986) Effects of beta-carboline-3-carboxylic acid ethyl ester on suppressed and non-suppressed responding in the rhesus monkey. Eur J Pharmacol 129:39–47

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Sanger DJ, Perrault G (1996) Further evidence for differences between non-selective and BZ-1 (ω1) selective, benzodiazepine receptor ligands in murine models of “state” and “trait” anxiety. Neuropharmacology 35:1081–1091

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RR, Weerts EM (1997) Benzodiazepine self-administration in humans and laboratory animals—implications of problems of long-term use and abuse. Psychopharmacology 134:1–37

    Article  PubMed  CAS  Google Scholar 

  • Harvey SC, Foster KL, McKay PF, Carroll MR, Seyoum R, Woods JE, Grey C, Jones CM, McCane S, Cummings R, Mason D, Ma C, Cook JM, June HL (2002) The GABAA receptor α1 subtype in the ventral pallidum regulates alcohol-seeking behaviors. J Neurosci 22:3765–3775

    PubMed  CAS  Google Scholar 

  • Ito K, Asakura A, Yamada Y, Nakamura K, Sawada U, Iga T (1997) Prediction of the therapeutic dose for benzodiazepine anxiolytics based on receptor occupancy theory. Biopharm Drug Dispos 18:293–303

    Article  PubMed  CAS  Google Scholar 

  • Kalin NH (2004) Studying non-human primates: a gateway to understanding anxiety disorders. Psychopharmacol Bull 38:8–13

    PubMed  Google Scholar 

  • Kalin NH, Shelton SE (1989) Defensive behaviors in infant rhesus monkeys: environmental cues and neurochemical regulation. Science 243:1718–1721

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Kodama M, Matsushita A (1984) An imidazodiazepine derivative, Ro 15-1788, behaves as a weak partial agonist in the crossed extensor reflex. Eur J Pharmacol 102:147–150

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (1997) Pharmacological analysis of drug-receptor interaction, 3rd edn. Raven, New York

    Google Scholar 

  • Kleven MS, Koek W (1999a) Effects of benzodiazepine agonists on punished responding in pigeons and their relationship with clinical doses in humans. Psychopharmacology 141:206–212

    Article  PubMed  CAS  Google Scholar 

  • Kleven MS, Koek W (1999b) Effects of different classes of partial benzodiazepine agonists on punished and unpunished responding in pigeons. Psychopharmacology 144:405–410

    Article  PubMed  CAS  Google Scholar 

  • Lavie P (1987) Ro 15-1788 decreases hypnotic effects of sleep deprivation. Life Sci 41:227–233

    Article  PubMed  CAS  Google Scholar 

  • Lelas S, Rowlett JK, Spealman RD (2001) Isobolographic analysis of chlordiazepoxide and triazolam combinations in squirrel monkeys discriminating triazolam. Psychopharmacology 158:181–189

    Article  PubMed  CAS  Google Scholar 

  • Licata SC, Platt DM, Cook JM, Sarma PVVS, Griebel G, Rowlett JK (2005) Contribution of GABAA receptor subtypes to the anxiolytic-like, motor, and discriminative stimulus effects of benzodiazepines: studies with the functionally selective ligand SL 651498 [6-fluoro-9-methyl-2-phenyl-4-(pyrrolidin-1-yl-carbonyl)-2,9-dihydro-1H-pyridol[3,4-b]indol-1-one]. J Pharmacol Exp Ther 313:1118–1125

    Article  PubMed  CAS  Google Scholar 

  • Lippa A, Czobor P, Stark J, Beer B, Kostakis E, Gravielle M, Bandyopadhyay S, Russek SJ, Gibbs TT, Farb DH, Skolnick P (2005) Selective anxiolysis produced by ocinaplon, a GABAA receptor modulator. Proc Natl Acad Sci USA 102:7380–7385

    Article  PubMed  CAS  Google Scholar 

  • Marescaux C, Micheletti G, Vergnes M, Depaulis A, Rumbach L, Warter J-M (1984) Biphasic effects of Ro 15-1788 on spontaneous petit mal-like seizures in rats. Eur J Pharmacol 102:355–359

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Schoch P, Jenck F, Moreau JL, Haefely WE (1993) Pharmacological characterization of benzodiazepine ligands with intrinsic efficacies ranging from high to zero. Psychopharmacology 111:415–422

    Article  PubMed  CAS  Google Scholar 

  • McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA α1 subtype. Nat Neurosci 3:587–592

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:83–244

    Article  PubMed  CAS  Google Scholar 

  • Ninan PT, Insel TM, Cohen RM, Cook JM, Skolnick P, Paul SM (1982) Benzodiazepine receptor-mediated experimental “anxiety” in primates. Science 218:1332–1334

    Article  PubMed  CAS  Google Scholar 

  • Nutt DJ (2005) Overview of diagnosis and drug treatments of anxiety disorders. CNS Spectr 10:49–56

    PubMed  Google Scholar 

  • Nutt DJ, Cowen PJ, Little HJ (1982) Unusual interactions of benzodiazepine receptor antagonists. Nature 295:436–438

    Article  PubMed  CAS  Google Scholar 

  • Nutt DJ, Glue P, Lawson C, Wilson S (1990) Flumazenil provocation of panic attacks. Evidence for altered benzodiazepine receptor sensitivity in panic disorder. Arch Gen Psychiatry 47:917–925

    PubMed  CAS  Google Scholar 

  • Paronis CA, Bergman J (1999) Apparent pA2 values of benzodiazepine antagonists and partial agonists in monkeys. J Pharmacol Exp Ther 290:1222–1229

    PubMed  CAS  Google Scholar 

  • Paronis CA, Cox ED, Cook JM, Bergman J (2001) Different types of GABAA receptors may mediate the anticonflict and response rate-decreasing effects of zaleplon, zolpidem, and midazolam in squirrel monkeys. Psychopharmacology 156:461–468

    Article  PubMed  CAS  Google Scholar 

  • Pritchett DB, Lüddens H, Seeburg PH (1989) Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245:1389–1392

    Article  PubMed  CAS  Google Scholar 

  • Rowlett JK, Woolverton WL (1996) Assessment of benzodiazepine receptor heterogeneity in vivo: apparent pA2 and pKB analysis from behavioral studies. Psychopharmacology 128:1–16

    Article  PubMed  CAS  Google Scholar 

  • Rowlett JK, Platt DM, Lelas S, Atack JR, Dawson GR (2005) Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proc Natl Acad Sci USA 102:915–920

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Crestani F, Möhler H (2000) GABAA receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 22:188–194

    Article  Google Scholar 

  • Sepinwall J, Grodsky FS, Cook L (1978) Conflict behavior in the squirrel monkey: effects of chlordiazepoxide, diazepam and n-desmethyldiazepam. J Pharmacol Exp Ther 204:88–102

    PubMed  CAS  Google Scholar 

  • Silveri S, Bruni F, Costagli C, Costanzo A, Guerrini G, Ciciani G, Gratteri P, Besnard F, Costa B, Montali M, Martini C, Fohlin J, De Siena G, Aiello PM (2005) A novel selective GABAAα1 receptor agonist displaying sedative and anxiolytic-like properties in rodents. J Med Chem 48:6756–6760

    Article  PubMed  CAS  Google Scholar 

  • Smith BJ, Bickel WK (1999) Flumazenil discrimination by humans under a two-response and a novel-response procedure. J Pharmacol Exp Ther 291:1257–1268

    PubMed  CAS  Google Scholar 

  • Spealman RD (1979) Comparison of drug effects on responding punished by pressurized air or electric shock delivery in squirrel monkeys: pentobarbital, chlordiazepoxide, d-amphetamine and cocaine. J Pharmacol Exp Ther 209:309–315

    PubMed  CAS  Google Scholar 

  • Tallman JF, Paul SM, Skolnick P, Gallager DW (1980) Receptors for the age of anxiety: pharmacology of the benzodiazepines. Science 207:274–281

    Article  PubMed  CAS  Google Scholar 

  • Uhlirova L, Sustkova-Fiserova M, Krsiak M (2004) Behavioral effects of flumazenil in the social conflict test in mice. Psychopharmacology 171:259–269

    Article  PubMed  CAS  Google Scholar 

  • Weerts EM, Tornatzky W, Miczek KA (1993) Prevention of the pro-aggressive effects of alcohol in rats and squirrel monkeys by benzodiazepine receptor antagonists. Psychopharmacology 111:144–152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Annemarie Duggan, Dr. Stefan Tiefenbacher, and Bethann Johnson for technical assistance. We thank Dr. Donna Platt and Ms. Angela Duke for comments on an earlier draft of this manuscript, and we are especially grateful to Dr. Roger Spealman for assistance in the development of this conflict procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Rowlett.

Additional information

This research was supported by U.S.P.H.S. grants DA11792 and RR00168

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowlett, J.K., Lelas, S., Tornatzky, W. et al. Anti-conflict effects of benzodiazepines in rhesus monkeys: relationship with therapeutic doses in humans and role of GABAA receptors. Psychopharmacology 184, 201–211 (2006). https://doi.org/10.1007/s00213-005-0228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0228-8

Keywords

Navigation