Skip to main content

Advertisement

Log in

Role of 5-HT2A and 5-HT2C/B receptors in the acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on striatal single-unit activity and locomotion in freely moving rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Like amphetamine, a locomotor-activating dose of 3,4-methylenedioxymethamphetamine (MDMA) predominantly excites striatal single-unit activity in freely moving rats. Although both D1- and D2-like dopamine (DA) receptors play important roles in this effect, MDMA, unlike amphetamine, strongly increases both DA and serotonin (5-HT) transmission.

Objectives

This study was conducted to investigate the 5-HT receptor mechanisms underlying the striatal effects of MDMA.

Methods

We recorded the activity of >200 single units in the striatum of awake, unrestrained rats in response to acute MDMA administration (5 mg/kg) combined with the selective blockade of either 5-HT2A or 5-HT2C/B receptors.

Results

Prior administration of SR-46349B (a 5-HT2A antagonist 0.5 mg/kg) blocked nearly all MDMA-induced striatal excitations, which paralleled its significant attenuation of MDMA-induced locomotor activation. Conversely, prior administration of SB-206553 (a 5-HT2C/B antagonist 2.0 mg/kg) had no effect on the amount of MDMA-induced locomotor activation or the distribution of single-unit responses to MDMA. However, a coefficient-of-variation analysis indicated significantly less variability in the magnitude of both MDMA-induced neuronal excitations and inhibitions in rats that were pretreated with SB-206553 compared to vehicle. Analysis of concurrent single-unit activity and behavior confirmed that MDMA-induced striatal activation was not merely due to behavioral feedback, indicating a primary action of MDMA.

Conclusion

These results support and extend our previous findings by showing that 5-HT2A and 5-HT2C/B receptors differentially regulate the expression of MDMA-induced behavioral and striatal neuronal responses, either directly or through the modulation of DA transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aulakh CS, Hill JL, Wozniak KM, Murphy DL (1988) Fenfluramine-induced suppression of food intake and locomotor activity is differentially altered by the selective type A monoamine oxidase inhibitor clorgyline. Psychopharmacology 95:313–317

    Article  PubMed  CAS  Google Scholar 

  • Ball KT, Budreau D, Rebec GV (2003) Acute effects of 3,4-methylenedioxymethamphetamine on striatal single-unit activity and behavior in freely moving rats: differential involvement of dopamine D1 and D2 receptors. Brain Res 994:203–215

    Article  PubMed  CAS  Google Scholar 

  • Bankson MG, Cunningham KA (2002) Pharmacological studies of the acute effects of (+)-3,4-methylenedioxymethamphetamine on locomotor activity: role of 5-HT1B/1D and 5-HT2 receptors. Neuropsychopharmacology 26:40–52

    Article  PubMed  CAS  Google Scholar 

  • Battaglia G, Brooks BP, Kulsakdinun C, De Souza EB (1988) Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 149:159–163

    Article  PubMed  CAS  Google Scholar 

  • Beardsley PM, Balster RL, Harris LS (1986) Self-administration of methylenedioxymethamphetamine (MDMA) by rhesus monkeys. Drug Alcohol Depend 18:149–157

    Article  PubMed  CAS  Google Scholar 

  • Bubar MJ, Pack KM, Frankel PS, Cunningham KA (2004) Effects of dopamine D1- or D2-like receptor antagonists on the hypermotive and discriminative stimulus effects of (+)-MDMA. Psychopharmacology 173:326–336

    Article  PubMed  CAS  Google Scholar 

  • Callaway CW, Wing L, Geyer MA (1990) Serotonin release contributes to the stimulant effects of 3,4-methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 254:456–464

    PubMed  CAS  Google Scholar 

  • Cole JC, Bailey M, Sumnall HR, Wagstaff GF, King LA (2002) The content of ecstasy tablets: implications for the study of their long-term effects. Addiction 97:1531–1536

    Article  PubMed  Google Scholar 

  • Cornish JL, Shahnawaz Z, Thompson MR, Wong S, Morley KC, Hunt GE, McGregor IS (2003) Heat increases 3,4-methylenedioxymethamphetamine self-administration and social effects in rats. Eur J Pharmacol 482:339–341

    Article  PubMed  CAS  Google Scholar 

  • Cottler LB, Womack SB, Compton WM, Ben-Abdallah A (2001) Ecstasy abuse and dependence among adolescents and young adults: applicability and reliability of DSM-IV criteria. Hum Psychopharmacol Clin Exp 16:599–606

    Article  CAS  Google Scholar 

  • Crespi D, Mennini T, Gobbi M (1997) Carrier-dependent and Ca(2+)-dependent 5-HT and dopamine release induced by (+)-amphetamine, 3,4-methylenedioxymethamphetamine, p-chloroamphetamine and (+)-fenfluramine. Br J Pharmacol 121:1735–1743

    Article  PubMed  CAS  Google Scholar 

  • Daniela E, Brennan K, Gittings D, Hely L, Schenk S (2004) Effects of SCH 23390 on (±)3,4-methylenedioxymethamphetamine hyperactivity and self-administration in rats. Pharmacol Biochem Behav 77:745–750

    Article  PubMed  CAS  Google Scholar 

  • Deadwyler SA (1986) Electrophysiological investigations of drug influences in the behaving animal. In: Geller HM (ed) Modern methods in pharmacology, vol 3, electrophysiological techniques in pharmacology. Alan R. Liss, New York, pp 1–15

    Google Scholar 

  • Dowling GP, McDonough ET, Bost RO (1987) “Eve” and “ecstasy”: a report of five deaths associated with the use of MDEA and MDMA. JAMA 257:1615–1617

    Article  PubMed  CAS  Google Scholar 

  • Fantegrossi WE, Ullrich T, Rice KC, Woods JH, Winger G (2002) 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) and its stereoisomers as reinforcers in rhesus monkeys: serotonergic involvement. Psychopharmacology 161:356–364

    Article  PubMed  CAS  Google Scholar 

  • Fischman MW, Johanson CE (1996) Cocaine. In: Schuster CR, Kuhar MJ (eds) Pharmacological aspects of drug dependence: towards an integrated neurobehavioral approach. Springer, Berlin Heidelberg New York, pp 159–195

    Google Scholar 

  • Fletcher PJ, Robinson SR, Slippoy DL (2001) Pre-exposure to (±)3,4-methylenedioxymethamphetamine (MDMA) facilitates acquisition of intravenous cocaine self-administration in rats. Neuropsychopharmacology 25:195–203

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PJ, Korth KM, Robinson SR, Baker GB (2002) Multiple 5-HT receptors are involved in the effects of acute MDMA treatment: studies on locomotor activity and responding for conditioned reinforcement. Psychopharmacology 162:282–291

    Article  PubMed  CAS  Google Scholar 

  • Fone KCF, Beckett SRG, Topham IA, Swettenham J, Ball M, Maddocks L (2002) Long-term changes in social interaction and reward following repeated MDMA administration to adolescent rats without accompanying serotonergic neurotoxicity. Psychopharmacology 159:437–444

    Article  PubMed  CAS  Google Scholar 

  • Gobert A, Rivet JM, Lejeune F, Newman-Tancredi A, Adhumeau-Auclair A, Nicolas JP, Cistarelli L, Melon C, Millan MJ (2000) Serotonin2C receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 36:205–221

    Article  PubMed  CAS  Google Scholar 

  • Gold LH, Koob GF, Geyer MA (1988) Stimulant and hallucinogenic behavioral profiles of 3,4-methylenedioxymethamphetamine and N-ethyl-3,4-methylenedioxyamphetamine in rats. J Pharmacol Exp Ther 247:547–555

    PubMed  CAS  Google Scholar 

  • Gold LH, Hubner CB, Koob GF (1989) A role for the mesolimbic dopamine system in the psychostimulant actions of MDMA. Psychopharmacology 99:40–47

    Article  PubMed  CAS  Google Scholar 

  • Gough B, Ali SF, Slikker W Jr, Holson RR (1991) Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on monoamines in rat caudate. Pharmacol Biochem Behav 39:619–623

    Article  PubMed  CAS  Google Scholar 

  • Gudelsky GA, Nash JF (1996) Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions. J Neurochem 66:243–249

    Article  PubMed  CAS  Google Scholar 

  • Haracz JL, Tschanz JT, Greenberg J, Rebec GV (1989) Amphetamine-induced excitations predominate in single neostriatal neurons showing motor-related activity. Brain Res 489:365–368

    Article  PubMed  CAS  Google Scholar 

  • Haracz JL, Tschanz JT, Wang Z, White IM, Rebec GV (1993) Striatal single-unit responses to amphetamine and neuroleptics in freely moving rats. Neurosci Biobehav Rev 17:1–12

    Article  PubMed  CAS  Google Scholar 

  • Haracz JL, Tschanz JT, Wang Z, Griffith KE, Rebec GV (1998) Amphetamine effects on striatal neurons: implications for models of dopamine function. Neurosci Biobehav Rev 22:613–622

    Article  PubMed  CAS  Google Scholar 

  • Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsaki G (2000) Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 84:401–414

    PubMed  CAS  Google Scholar 

  • Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of the accumbal core and shell in the rat. Neuroscience 41:89–125

    Article  PubMed  CAS  Google Scholar 

  • Hekmatpanah CR, Peroutka SJ (1990) 5-hydroxytryptamine uptake blockers attenuate the 5-hydroxytryptamine-releasing effect of 3,4-methylenedioxymethamphetamine and related agents. Eur J Pharmacol 177:95–98

    Article  PubMed  CAS  Google Scholar 

  • Henry JA, Jeffreys KJ, Dawling S (1992) Toxicity and deaths from 3,4-methylenedioxymethamphetamine (“ecstasy”). Lancet 340:384–387

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P, White SR (1998) MDMA elicits behavioral and neurochemical sensitization in rats. Neuropsychopharmacology 18:469–479

    Article  PubMed  CAS  Google Scholar 

  • Kankaanpaa A, Meririnne E, Lillsunde P, Seppala T (1998) The acute effects of amphetamine derivatives on extracellular serotonin and dopamine levels in rat nucleus accumbens. Pharmacol Biochem Behav 59:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Kehne JH, Ketteler HJ, McCloskey TC, Sullivan CK, Dudley MW, Schmidt CJ (1996) Effects of the selective 5-HT2A receptor antagonist MDL 100,907 on MDMA-induced locomotor stimulation in rats. Neuropsycopharmacology 15:116–124

    Article  CAS  Google Scholar 

  • Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T, Thomas DR, Baxter GS, Forbes IT, Ham P, Blackburn TP (1996) In vitro and in vivo profile of SB 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties. Br J Pharmacol 117:427–434

    PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Rebec GV (1997) Iontophoresis of amphetamine in the neostriatum and nucleus accumbens of awake, unrestrained rats. Brain Res 771:14–24

    Article  PubMed  CAS  Google Scholar 

  • Koch S, Galloway MP (1997) MDMA induced dopamine release in vivo: role of endogenous serotonin. J Neural Transm 104:135–146

    Article  PubMed  CAS  Google Scholar 

  • Kosobud AEK, Harris GC, Chapin JK (1994) Behavioral associations of neuronal activity in the ventral tegmental area of the rat. J Neurosci 14:7117–7129

    PubMed  CAS  Google Scholar 

  • Lamb RJ, Griffiths RR (1987) Self-injection of d,l-3-4-methylenedioxymethamphetamine (MDMA) in the baboon. Psychopharmacology 91:268–272

    Article  PubMed  CAS  Google Scholar 

  • Lucas G, Spampinato U (2000) Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. J Neurochem 74:693–701

    Article  PubMed  CAS  Google Scholar 

  • Marona-Lewicka D, Rhee G-S, Sprague JE, Nichols DE (1996) Reinforcing effects of certain serotonin-releasing amphetamine derivatives. Pharmacol Biochem Behav 53:99–105

    Article  PubMed  CAS  Google Scholar 

  • Matthews RT, Champney TH, Frye GD (1989) Effects of (±)3,4-methylenedioxymetamphetamine (MDMA) on brain dopaminergic activity in rats. Pharmacol Biochem Behav 33:741–747

    Article  PubMed  CAS  Google Scholar 

  • McCreary AC, Bankson MG, Cunningham KA (1999) Pharmacological studies of the acute and chronic effects of (+)-3,4-mehylenedioxymethamphetamine on locomotor activity: role of 5-hydroxytryptamine1A and 5-hydroxytryptamine1B/1D receptors. J Pharmacol Exp Ther 290:965–973

    PubMed  CAS  Google Scholar 

  • McKenna DJ, Guan X-M, Shulgin AT (1991) 3,4-methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol Biochem Behav 38:505–512

    Article  PubMed  CAS  Google Scholar 

  • McNamara MG, Kelly JP, Leonard BE (1995) Some behavioural and neurochemical aspects of subacute (±)3,4-methylenedioxymethamphetamine administration in rats. Pharmacol Biochem Behav 52:479–484

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Mayerhofer A, Kovar K-A, Schmidt WJ (2002) Rewarding effects of the optical isomers of 3,4-methylenedioxymethylamphetamine (‘ecstasy’) and 3,4-methylenedioxyethylamphetamine (‘eve’) measured by conditioned place preference in rats. Neurosci Lett 330:280–284

    Article  PubMed  CAS  Google Scholar 

  • Moser PC, Moran PM, Frank RA, Kehne JH (1996) Reversal of amphetamine-induced behaviours by MDL 100,907, a selective 5-HT2A antagonist. Behav Brain Res 73:163–167

    Article  PubMed  CAS  Google Scholar 

  • Nash JF, Brodkin J (1991) Microdialysis studies on 3,4-methylenedioxymethamphetamine-induced dopamine release: effect of dopamine uptake inhibitors. J Pharmacol Exp Ther 259:820–825

    PubMed  CAS  Google Scholar 

  • National Research Council of the National Academies (2003) Guidelines for the care and use of mammals in neuroscience and behavioral research. National Academy Press, Washington, DC

    Google Scholar 

  • Ng NK, Lee HS, Wong PT (1999) Regulation of striatal dopamine release through 5-HT1 and 5-HT2 receptors. J Neurosci Res 55:600–607

    Article  PubMed  CAS  Google Scholar 

  • Obradovic T, Imel KM, White SR (1996) Methylenedioxymethamphetamine-induced inhibition of neuronal firing in the nucleus accumbens is mediated by both serotonin and dopamine. Neuroscience 74:469–481

    Article  PubMed  CAS  Google Scholar 

  • Obradovic T, Imel KM, White SR (1998) Repeated exposure to methylenedioxymethamphetamine (MDMA) alters nucleus accumbens neuronal responses to dopamine and serotonin. Brain Res 785:1–9

    Article  PubMed  CAS  Google Scholar 

  • O'Shea E, Granados R, Esteban B, Colado MI, Green AR (1998) The relationship between the degree of neurodegeneration of rat brain 5-HT nerve terminals and the dose and frequency of administration of MDMA (‘ecstasy’). Neuropharmacology 37:919–926

    Article  PubMed  Google Scholar 

  • Parrott AC (2002) Recreational ecstasy/MDMA, the serotonin syndrome, and serotonergic neurotoxicity. Pharmacol Biochem Behav 71:837–844

    Article  PubMed  CAS  Google Scholar 

  • Parsons LH, Koob GF, Weiss F (1999) RU 24969, a 5-HT1B/1A receptor agonist, potentiates cocaine-induced increases in nucleus accumbens dopamine. Synapse 32:132–135

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, New York

    Google Scholar 

  • Porras G, DiMatteo V, Fracasso C, Lucas G, DeDeurwaerdere P, Caccia S, Esposito E, Spampinato U (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26:311–324

    Article  PubMed  CAS  Google Scholar 

  • Ratzenboeck E, Saria A, Kriechbaum N, Zernig G (2001) Reinforcing effects of MDMA (‘ecstasy’) in drug-naïve and cocaine-trained rats. Pharmacology 62:138–144

    Article  PubMed  CAS  Google Scholar 

  • Rebec GV (1998) Behavioral pharmacology of amphetamines. In: Tarter RE, Ott PJ, Ammerman RT (eds) Handbook of substance abuse: neurobehavioral pharmacology. Plenum Press, New York, pp 515–527

    Google Scholar 

  • Rebec GV, Haracz JL, Tschanz JT, Wang Z, White I (1991) Responses of motor- and nonmotor-related neostriatal neurons to amphetamine and neuroleptic drugs. In: Bernardi G, Carpenter MB, Di Chiara G, Morelli M, Stanzione P (eds) Basal ganglia III, advances in behavioral biology, vol 39. Plenum Press, New York, pp 463–470

    Google Scholar 

  • Reid LD, Hubbell CL, Tsai J, Fishkin MD, Amendola CA (1996) Naltrindole, a delta-opioid antagonist, blocks MDMA's ability to enhance pressing for rewarding brain stimulation. Pharmacol Biochem Behav 53:477–480

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, Yuan J, McCann UD (2000) (±)3,4-Methylenedioxymethamphetamine (‘ecstasy’)-induced serotonin neurotoxicity: studies in animals. Neuropsychobiology 42:5–10

    Article  PubMed  CAS  Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes (Exploring the neural code). MIT Press, Cambridge, MA

    Google Scholar 

  • Rosa-Kenig A, Puotz JK, Rebec GV (1993) The involvement of D1 and D2 dopamine receptors in amphetamine-induced changes in striatal unit activity in behaving rats. Brain Res 619:347–351

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G, Wall SC (1992) The molecular mechanism of “ecstasy” [3,4-methylenedioxymethamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc Natl Acad Sci U S A 89:1817–1821

    Article  PubMed  CAS  Google Scholar 

  • Schenk S, Gittings D, Johnstone M, Daniela E (2003) Development, maintenance and temporal pattern of self-administration maintained by ecstasy (MDMA) in rats. Psychopharmacology 169:21–27

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ, Fadayel GM, Sullivan CK, Taylor VL (1992) 5-HT2 receptors exert a state-dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 223:65–74

    Article  PubMed  CAS  Google Scholar 

  • Schmitzer-Torbert N, Jackson J, Henze D, Harris K, Redish AD (2005) Quantitative measures of cluster quality for use in extracellular recordings. Neuroscience 131:1–11

    Article  PubMed  CAS  Google Scholar 

  • Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) (1-(2,5-dimethoxy-4 iodophenyl)-2-amino-propane)-induced head twitches in the rat are mediated by 5-hydroxytryptamine (5-HT)2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273:101–112

    PubMed  CAS  Google Scholar 

  • Segal DS, Kuczenski R (1994) Behavioral pharmacology of amphetamine. In: Cho A, Segal DS (eds) Amphetamine and its analogs. Academic, San Diego, CA, pp 115–150

    Google Scholar 

  • Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–677

    Article  PubMed  CAS  Google Scholar 

  • Slikker W Jr, Holson RR, Ali SF, Kolta MG, Paule MG, Scallet AC, McMillan DE, Bailey JR, Hong JS, Scalzo FM (1989) Behavioral and neurochemical effects of orally administered MDMA in the rodent and nonhuman primate. Neurotoxicology 10:529–542

    PubMed  CAS  Google Scholar 

  • Spanos LJ, Yamamoto BK (1989) Acute and subchronic effects of methylenedioxymethamphetamine [(±)MDMA] on locomotion and serotonin syndrome behavior in the rat. Pharmacol Biochem Behav 32:835–840

    Article  PubMed  CAS  Google Scholar 

  • Tschanz JT, Haracz JL, Griffith KE, Rebec GV (1991) Bilateral cortical ablations attenuate amphetamine-induced excitations of neostriatal motor-related neurons in freely moving rats. Neurosci Lett 134:127–130

    Article  PubMed  CAS  Google Scholar 

  • Tschanz JT, Griffith KE, Haracz JL, Rebec GV (1994) Cortical lesions attenuate the opposing effects of amphetamine and haloperidol on neostriatal neurons in freely moving rats. Eur J Pharmacol 257:161–167

    Article  PubMed  CAS  Google Scholar 

  • Wakonigg G, Sturm K, Saria A, Zernig G (2003) Methylenedioxymethamphetamine (MDMA, ‘ecstasy’) serves as a robust positive reinforcer in a rat runway procedure. Pharmacology 69:180–182

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Rebec GV (1993) Neuronal and behavioral correlates of intrastriatal infusions of amphetamine in freely moving rats. Brain Res 627:79–88

    Article  PubMed  CAS  Google Scholar 

  • Warenycia MW, McKenzie GM (1984) Immobilization of rats modifies the response of striatal neurons to dexamphetamine. Pharmacol Biochem Behav 21:53–59

    Article  PubMed  CAS  Google Scholar 

  • West MO (1998) Anesthetics eliminate somatosensory-evoked discharges of neurons in the somatotopically organized sensorimotor striatum of the rat. J Neurosci 18:9055–9068

    PubMed  CAS  Google Scholar 

  • West MO, Peoples LL, Michael AJ, Chapin JK, Woodward DJ (1997) Low-dose amphetamine elevates movement-related firing of rat striatal neurons. Brain Res 745:331–335

    Article  PubMed  CAS  Google Scholar 

  • White SR, Duffy P, Kalivas PW (1994) Methylenedioxymethamphetamine depresses glutamate-evoked neuronal firing and increases extracellular levels of dopamine and serotonin in the nucleus accumbens in vivo. Neuroscience 62:41–50

    Article  PubMed  CAS  Google Scholar 

  • White SR, Harris GC, Imel KM, Wheaton MJ (1995) Inhibitory effects of dopamine and methylenedioxymethamphetamine (MDMA) on glutamate-evoked firing of nucleus accumbens and caudate/putamen cells are enhanced following cocaine self-administration. Brain Res 681:167–176

    Article  PubMed  CAS  Google Scholar 

  • White SR, Obradovic T, Imel KM, Wheaton MJ (1996) The effects of methylenedioxymethamphetamine (MDMA, ‘ecstasy’) on monoaminergic neurotransmission in the central nervous system. Prog Neurobiol 49:455–479

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Spanos LJ (1988) The acute effects of methylenedioxymethamphetamine on dopamine release in the awake-behaving rat. Eur J Pharmacol 148:195–203

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Nash JF, Gudelsky GA (1995) Modulation of methylenedioxymethamphetamine-induced striatal dopamine release by the interaction between serotonin and γ-aminobutyric acid in the substantia nigra. J Pharmacol Exp Ther 273:1063–1070

    PubMed  CAS  Google Scholar 

  • Zahm DS, Heimer L (1993) Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J Comp Neurol 327:220–232

    Article  PubMed  CAS  Google Scholar 

  • Ziance RJ, Sipes IG, Kinnard WJ, Buckley JP (1972) Central nervous system effects of fenfluramine hydrochloride. J Pharmacol Exp Ther 180:110–117

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (DA 02451). MDMA was generously provided by the National Institute on Drug Abuse. SR-46349B was kindly provided by Sanofi Synthelabo Recherche. The authors wish to thank Dr. Dale Sengelaub for his expertise and generous assistance in histological and photomicrograph preparation. We also thank Paul Langley for technical support, Faye Caylor for editorial assistance, and Kelly Walsh for electrode bundle construction and behavioral scoring.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George V. Rebec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, K.T., Rebec, G.V. Role of 5-HT2A and 5-HT2C/B receptors in the acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on striatal single-unit activity and locomotion in freely moving rats. Psychopharmacology 181, 676–687 (2005). https://doi.org/10.1007/s00213-005-0038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0038-z

Keywords

Navigation