Skip to main content
Log in

Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background and rationale

Working memory performance is considered to be a core deficit in schizophrenia and the best predictor of social reintegration and propensity for relapse. This cardinal cognitive process is critical for human reasoning and judgment and depends upon the integrity of prefrontal function. Prefrontal dysfunction in schizophrenia has been linked to altered dopaminergic and glutamatergic transmission. However, to date, antipsychotics provide no substantial relief from the debilitating cognitive consequences of this disease.

Objectives

This review examines the key rodent and non-human primate models for elucidating the neural mechanisms of working memory and their neuromodulation. We compare the physiology and pharmacology of working memory between the normal state and experimentally induced models of prefrontal dysfunction and evaluate their relevance for schizophrenia.

Results and conclusions

Rodent models have demonstrated the significance of aberrant dopaminergic and glutamatergic signaling in medial prefrontal cortex for working memory. However, there is some question as to the extent to which rodent tests of working memory tap into the same process that is compromised in schizophrenia. Non-human primates provide an unexcelled model for the study of influences on prefrontal function and working memory due to the high degree of homology between human and non-human primates in the relationship between prefrontal cortex and higher cognitive capacities. Moreover, non-human primate models of prefrontal dysfunction including amphetamine sensitization, subchronic phencyclidine, and neurodevelopmental insult are ideal for the analysis of novel compounds for the treatment of cognitive dysfunction in schizophrenia, thereby facilitating the translation between preclinical drug development and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang D-R, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719

    CAS  PubMed  Google Scholar 

  • Abi-Saab WM, D’Souza DC, Moghaddam B, Krystal JH (1998) The NMDA antagonist model for schizophrenia: promise and pitfalls. Pharmacopsychiatry 31:104–109

    Google Scholar 

  • Aghajanian GK, Marek GJ (1999) Serotonin and hallucinogens. Neuropsychopharmacology 21:16S–23S

    Article  CAS  PubMed  Google Scholar 

  • Aghajanian GK, Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Brain Res Rev 31:302–312

    CAS  PubMed  Google Scholar 

  • Algan O, Rakic P (1997) Radiation-induced, lamina-specific deletion of neurons in the primate visual cortex. J Comp Neurol 381:335–352

    Article  CAS  PubMed  Google Scholar 

  • Allen RM, Young SJ (1978) Phencyclidine-induced psychosis. Am J Psychiatry 135:1081–1084

    Google Scholar 

  • Andreasen NC (1997) Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology. Science 275:1586–1593

    CAS  PubMed  Google Scholar 

  • Annett LE, Ridley RM, Gamble SJ, Baker HF (1983) Behavioral effects of intracerebral amphetamine in the marmoset. Psychopharmacology 81:18–23

    CAS  PubMed  Google Scholar 

  • Annett LE, Ridley RM, Gamble SJ, Baker HF (1989) Social withdrawal following amphetamine administration to marmosets. Psychopharmacology 99:222–229

    CAS  PubMed  Google Scholar 

  • Antonova I, Arancio O, Trillat AC, Wang HG, Zablow L, Udo H, Kandel ER, Hawkins RD (2001) Rapid increase in clusters of presynaptic proteins at onset of long-lasting potentiation. Science 294:1547–1550

    Article  CAS  PubMed  Google Scholar 

  • Arnold SE (2000) Cellular and molecular neuropathology of the parahippocampal region in schizophrenia. Ann N Y Acad Sci 911:275–292

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1998) Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry 55:362–368

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151

    CAS  PubMed  Google Scholar 

  • Aultman JM, Moghaddam B (2001) Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task. Psychopharmacology 153:353–364

    Article  CAS  PubMed  Google Scholar 

  • Bachevalier J, Alvarado MC, Malkova L (1999) Memory and socioemotional behavior in monkeys after hippocampal damage incurred in infancy or in adulthood. Biol Psychiatry 46:329–339

    Article  CAS  PubMed  Google Scholar 

  • Baddeley AD (1992) Working memory. Science 255:556–559

    CAS  Google Scholar 

  • Baddeley AD (2000) The episodic buffer: a new component of working memory? Trend Cognit Sci 4:417–423

    Article  Google Scholar 

  • Baddeley A, Della Sala S (1996) Working memory and executive control. Philos Trans R Soc Lond B Biol Sci 351:1397–1403; discussion 1403–1404

    CAS  PubMed  Google Scholar 

  • Baddeley AD, Hitch GJ (1974) Working memory. In: Bower GA (ed) Recent advances in learning and motivation (vol 8). Academic Press, New York, pp 47–90

  • Baron SP, Wenger GR (2001) Effects of drugs of abuse on response accuracy and bias under a delayed matching-to-sample procedure in squirrel monkeys. Behav Pharmacol 12:247–256

    CAS  PubMed  Google Scholar 

  • Bast T, Zhang WN, Feldon J (2001) Hyperactivity, decreased startle reactivity, and disrupted prepulse inhibition following disinhibition of the rat ventral hippocampus by the GABA(A) receptor antagonist picrotoxin. Psychopharmacology 156:225–233

    Article  CAS  PubMed  Google Scholar 

  • Bauer RH, Fuster JM (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J Comp Physiol Psychol 90:293–302

    CAS  PubMed  Google Scholar 

  • Bauer RH, Fuster JM (1978) Effects of d-amphetamine and prefrontal cortical cooling on delayed matching-to-sample behavior. Pharmacol Biochem Behav 8:243–249

    Article  CAS  PubMed  Google Scholar 

  • Beatty WW, Rush JR (1983) Retention deficit after d-amphetamine treatment: memory defect or performance change? Behav Neural Biol 37:265–275

    CAS  PubMed  Google Scholar 

  • Beauregard M, Bachevalier J (1996) Neonatal insult to the hippocampal region and schizophrenia: a review and a putative animal model. Can J Psychiatry 41:446–456

    CAS  PubMed  Google Scholar 

  • Becker A, Peter B, Schroeder H, Mann T, Huether G, Grecksch G (2003) Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:687–700

    Article  CAS  PubMed  Google Scholar 

  • Berman KF, Zec RF, Weinberger DR (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Arch Gen Psychiatry 43:126–135

    CAS  PubMed  Google Scholar 

  • Bertolino A, Saunders RC, Mattay VS, Bachevalier J, Frank JA, Weinberger DR (1997) Altered development of prefrontal neurons in rhesus monkeys with neonatal mesial temporo-limbic lesions: a proton magnetic resonance spectroscopic imaging study. Cereb Cortex 7:740–748

    Article  CAS  PubMed  Google Scholar 

  • Bertolino A, Knable MB, Saunders RC, Callicott JH, Kolachana B, Mattay VS, Bachevalier J, Frank JA, Egan M, Weinberger DR (1999) The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biol Psychiatry 45:660–667

    CAS  PubMed  Google Scholar 

  • Bhalla US (2002) Biochemical signaling networks decode temporal patterns of synaptic input. J Comput Neurosci 13:49–62

    Article  PubMed  Google Scholar 

  • Blokland A, Honig W, Prickaerts J (1998) Effects of haloperidol and d-amphetamine on working and reference memory performance in a spatial cone field task. Behav Pharmacol 9:429–436

    CAS  PubMed  Google Scholar 

  • Boyce S, Rupniak NM, Steventon MJ, Cook G, Iversen SD (1991) Psychomotor activity and cognitive disruption attributable to NMDA, but not sigma, interactions in primates. Behav Brain Res 42:115–121

    PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    CAS  PubMed  Google Scholar 

  • Braunstein-Bercovitz H, Dimentman-Ashkenazi I, Lubow RE (2001) Stress affects the selection of relevant from irrelevant stimuli. Emotion 1:182–192

    Article  CAS  PubMed  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolchana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pikar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci 94:2569–2574

    CAS  PubMed  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932

    CAS  PubMed  Google Scholar 

  • Brunel N, Wang X-J (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11:63–85

    Article  CAS  PubMed  Google Scholar 

  • Buresova O, Bures J (1982) Radial maze as a tool for assessing the effect of drugs on the working memory of rats. Psychopharmacology 77:268–271

    CAS  PubMed  Google Scholar 

  • Butelman ER (1990) The effect of NMDA antagonists in the radial arm maze task with an interposed delay. Pharmacol Biochem Behav 35:533–536

    Article  CAS  PubMed  Google Scholar 

  • Butters N, Pandya D, Sanders K, Dye P (1971) Behavioral deficits in monkeys after selective lesions within the middle third of sulcus principalis. J Comp Physiol Psychol 72:132–144

    Google Scholar 

  • Callicott JH, Bertolino A, Mattay VS, Langheim FJP, Duyn J, Coppola R, Goldberg TE, Weinberger DR (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078–1092

    Article  CAS  PubMed  Google Scholar 

  • Castner SA, Goldman-Rakic PS (1999a) Long-lasting psychotomimetic consequences of repeated low dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology 20:10–28

    Google Scholar 

  • Castner SA, Goldman-Rakic PS (1999b) Profound cognitive impairments in non-human primates exposed to amphetamine. Soc Neurosci Abstr 25:1563

    Google Scholar 

  • Castner SA, Goldman-Rakic PS (2000) Spatial working memory performance during and following amphetamine sensitization in monkeys. Soc Neurosci Abstr 26:493.8

    Google Scholar 

  • Castner SA, Goldman-Rakic PS (2003) Amphetamine sensitization of hallucinatory-like behaviors is dependent on prefrontal cortex in non-human primates. Biol Psychiatry 54:105–110

    Article  CAS  PubMed  Google Scholar 

  • Castner SA, Goldman-Rakic PS (2004) Enhancement of working memory in aged monkeys by a sensitizing regime of dopamine D1 receptor stimulation. J Neurosci (in press)

  • Castner SA, Algan O, Findlay HA, Rakic P, Goldman-Rakic PS (1998) Fetal x-irradiation in monkeys impairs working memory after but not prior to puberty. Soc Neurosci Abstr 24(1):225

    Google Scholar 

  • Castner SA, Williams GV, Goldman-Rakic PS (2000a) Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287:2020–2022

    Article  CAS  PubMed  Google Scholar 

  • Castner SA, Al-Tikriti M, Baldwin RM, Seibyl JP, Innis RB, Goldman-Rakic PS (2000b) Behavioral changes and [123I]-IBZM equilibrium measurement of AMPH-induced dopamine release in rhesus monkeys. Neuropsychopharmacology 22:4–13

    Article  CAS  PubMed  Google Scholar 

  • Castner SA, Vosler PS, Goldman-Rakic PS (2001) Lowered dopamine turnover in amphetamine-sensitized monkeys: development of a primate model of schizophrenia. Biol Psychiatr Abstr 49:124S

    Google Scholar 

  • Chaffee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79:2919–2940

    CAS  PubMed  Google Scholar 

  • Chambers RA, Moore J, McEvoy JP, Levin ED (1996) Cognitive effects of neonatal hippocampal lesions in a rat model of schizophrenia. Neuropsychopharmacology 15:587–594

    CAS  PubMed  Google Scholar 

  • Cirillo RA, Horel JA, George PJ (1989) Lesions of the anterior temporal stem and the performance of delayed match-to-sample and visual discrimination in monkeys. Behav Brain Res 34:55–69

    CAS  PubMed  Google Scholar 

  • Coleman MJ, Cook S, Matthysse S, Barnard J, Lo Y, Levy DL, Rubin DB, Holzman PS (2002) Spatial and object working memory impairments in schizophrenia patients: a Bayesian item-response theory analysis. J Abnorm Psychol 111:425–435

    Article  PubMed  Google Scholar 

  • Collins P, Roberts AC, Dias R, Everitt BJ, Robbins TW (1998) Perseveration and strategy in a novel spatial self-ordered sequencing task for non-human primates: effects of excitotoxic lesions and dopamine depletions of the prefrontal cortex. J Cognit Neurosci 10:332–354

    Article  CAS  Google Scholar 

  • Collins P, Wilkinson LS, Everitt BJ, Robbins TW, Roberts AC (2000) The effect of dopamine depletion from the caudate nucleus of the common marmoset (Callithrix jacchus) on tests of prefrontal cognitive function. Behav Neurosci 114:3–17

    CAS  PubMed  Google Scholar 

  • Constantinides C, Williams GV, Goldman-Rakic PS (2002) A role for inhibition in shaping the temporal flow of information in the prefrontal cortex. Nat Neurosci 5:175–80

    Article  PubMed  Google Scholar 

  • Corso TD, Sesma MA, Tenkova TI, Der TC, Wozniak DF, Farber NB, Olney JW (1997) Multifocal brain damage induced by phencyclidine is augmented by pilocarpine. Brain Res 752:1–14

    Article  CAS  PubMed  Google Scholar 

  • Daenen EW, Wolterink G, Van Der Heyden JA, Kruse CG, Van Ree JM (2003) Neonatal lesions in the amygdala or ventral hippocampus disrupt prepulse inhibition of the acoustic startle response: implications for an animal model of neurodevelopmental disorders like schizophrenia. Eur Neuropsychopharmacol 13:187–197

    Article  CAS  PubMed  Google Scholar 

  • Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, Handel S, Bigelow LB, Goldberg TE, Berman KF, Kleinman JE (1991) The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 11:1907–1917

    CAS  PubMed  Google Scholar 

  • Davachi L, Goldman-Rakic PS (2001) Primate rhinal cortex participates in both visual recognition and working memory tasks: functional mapping with 2-DG. J Neurophysiol 85:2590–2601

    CAS  PubMed  Google Scholar 

  • Davidson M, Keefe RS (1995) Cognitive impairment as a target for pharmacological treatment in schizophrenia. Schizophr Res 17:123–129

    CAS  PubMed  Google Scholar 

  • De Paulis T (2001) M-100907 (Aventis). Curr Opin Investig Drugs 2:123–132

    PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Primate analogue of the Wisconsin card sorting test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–886

    Article  CAS  PubMed  Google Scholar 

  • Durstewitz D, Seamans JK (2002) The computational role of dopamine D1 receptors in working memory. Neural Networks 15:561–572

    Article  PubMed  Google Scholar 

  • Easton A, Parker A, Gaffan D (2001) Crossed unilateral lesions of medial forebrain bundle and either inferior temporal or frontal cortex impair object recognition memory in Rhesus monkeys. Behav Brain Res 121:1–10

    Article  CAS  PubMed  Google Scholar 

  • Elevag B, Goldberg TE (2000) Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 14:1–21

    CAS  PubMed  Google Scholar 

  • Ellinwood EH Jr (1967) Amphetamine psychosis. I. Description of the individuals and the process. J Nerv Ment Dis 144:273–283

    Google Scholar 

  • Ellinwood EH Jr, Sudilovsky A, Nelson LM (1973) Evolving behavior in the clinical and experimental amphetamine (model) psychosis. Am J Psychiatry 130:1088–1093

    PubMed  Google Scholar 

  • Elliot R, McKenna PJ, Robbins TW, Sahakian BJ (1995) Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychol Med 25:619–630

    CAS  PubMed  Google Scholar 

  • Elliot R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW (1997) Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology 131:196–206

    CAS  PubMed  Google Scholar 

  • Ellison G, Eison MS (1983) Continuous amphetamine intoxication: an animal model of the acute psychotic episode. Psychol Med 13:751–761

    CAS  PubMed  Google Scholar 

  • Ellison G, Ratan R (1982) The late stage following continuous amphetamine administration to rats is correlated with altered dopamine but not serotonin metabolism. Life Sci 31:771–777

    Article  CAS  PubMed  Google Scholar 

  • Ellison G, Eison MS, Huberman HS, Daniel F (1978) Long-term changes in dopamine innervation of caudate nucleus after continuous amphetamine administration. Science 201:276–278

    CAS  PubMed  Google Scholar 

  • Ellison G, Nielsen EB, Lyon M (1981) Animal model of psychosis: hallucinatory behaviors in monkeys during the late stage of continuous amphetamine intoxication. J Psychiatr Res 16:13–22

    Article  CAS  PubMed  Google Scholar 

  • Ellison G, Keys A, Noguchi K (1999) Long-term changes in brain following continuous phencyclidine administration: an autoradiographic study using flunitrazepam, ketanserin, mazindol, quinuclidinyl benzilate, piperidyl-3,4–3H(N)-TCP, and AMPA receptor ligands. Pharmacol Toxicol 84:9–17

    CAS  PubMed  Google Scholar 

  • Escobar M, Oberling P, Miller RR (2002) Associative deficit accounts of disrupted latent inhibition and blocking in schizophrenia. Neurosci Biobehav Rev 26:203–216

    Google Scholar 

  • Fauman B, Aldinger G, Fauman M, Rosen P (1976) Psychiatric sequelae of phencyclidine abuse. Clin Toxicol 9:529–538

    Google Scholar 

  • Feldon J, Weiner I (1992) From an animal model of attentional deficit towards new insights into the pathophysiology of schizophrenia. 26:345–366

  • Friedman HR, Goldman-Rakic PS (1988) Activation of the hippocampus and dentate gyrus by working memory: a 2-deoxyglucose study of behaving rhesus monkeys. J Neurosci 8:4693–4706

    CAS  PubMed  Google Scholar 

  • Friedman HR, Goldman-Rakic PS (1994) Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. J Neurosci 14:2775–2788

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63:814–831

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 13:1479–1497

    CAS  PubMed  Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 36:61–78

    CAS  PubMed  Google Scholar 

  • Fuster JM (1997) The prefrontal cortex. Raven Press, New York

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    CAS  PubMed  Google Scholar 

  • Gaffan D, Murray EA (1992) Monkeys (Macaca fascicularis) with rhinal cortex ablations succeed in object discrimination learning despite 24-hr intertrial intervals and fail at matching to sample despite double sample presentations. Behav Neurosci 106:30–38

    Article  CAS  PubMed  Google Scholar 

  • Gelowitz DL, Rakic P, Goldman-Rakic PS, Selemon LD (2002) Craniofacial dysmorphogenesis in fetally irradiated non-human primates: implications for the neurodevelopmental hypothesis of schizophrenia. Biol Psychiatry 52:716–720

    Article  PubMed  Google Scholar 

  • George PJ, Horel JA, Cirillo RA (1989) Reversible cold lesions of the parahippocampal gyrus in monkeys result in deficits on the delayed match-to-sample and other visual tasks. Behav Brain Res 34:163–178

    CAS  PubMed  Google Scholar 

  • Geyer MA, Krebs-Thomas K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F (ed) Handbook of physiology, the nervous system, functions of the brain. American Physiological Society, Bethesda, Md., pp 373–417

  • Goldman-Rakic PS (1990) Cellular and circuit basis of working memory in prefrontal cortex of non-human primates. Prog Brain Res 85:325–335

    Google Scholar 

  • Goldman-Rakic PS (1991) Prefrontal cortical dysfunction in working memory: the relevance of working memory. In: Caroll BJ, Barrett JE (eds) Psychopathology and the brain. Raven, New York, pp 1–23

  • Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatr Clin Neurosci 6:348–357

    CAS  Google Scholar 

  • Goldman-Rakic PS, Selemon LD (1997) Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 23:437–458

    CAS  PubMed  Google Scholar 

  • Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20:1208–1215

    PubMed  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    CAS  PubMed  Google Scholar 

  • Green MF (1997) Schizophrenia from a neurocognitive perspective: probing the impenetrable darkness. Pearson Allyn & Bacon, Boston, Mass.

    Google Scholar 

  • Green MF, Marder SR, Glynn SM, McGurk SR, Wirshing WC, Wirshing DA, Liberman RF, Mintz J (2002) The neurocognitive effects of low-dose haloperidol: a two-year comparison with risperidone. Biol Psychiatry 51:972–978

    Article  PubMed  Google Scholar 

  • Green RJ, Stanton ME (1989) Differential ontogeny of working memory and reference memory in the rat. Behav Neurosci 103:98–105

    Article  CAS  PubMed  Google Scholar 

  • Hall H, Farde L, Hallidin C, Lundkvist C, Sedvall G (2000) Autoradiographic localization of 5-HT(2A) receptors in the human brain using [(3)H]M100907 and [(11)C]M100907. Synapse 38:421–431

    Article  CAS  Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624

    Article  PubMed  Google Scholar 

  • Haxby JV, Ungerleider LG, Horwitz B, Maisog JM, Rapoport SI, Grady CL (1996) Face encoding and recognition in the human brain. Proc Natl Acad Sci 93:922–997

    CAS  PubMed  Google Scholar 

  • Horel JA, Pytko-Joiner DE, Voytko ML, Salsbury K (1987) The performance of visual tasks while segments of the inferotemporal cortex are suppressed by cold. Behav Brain Res 23:29–42

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531

    CAS  PubMed  Google Scholar 

  • Isseroff A, Rosvold HE, Galkin TW, Goldman-Rakic PS (1982) Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys. Brain Res 232:97–113

    Article  CAS  PubMed  Google Scholar 

  • Japha K, Koch M (1999) Picrotoxin in the medial prefrontal cortex impairs sensorimotor gating in rats: reversal by haloperidol. Psychopharmacology 144:347–354

    Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    CAS  PubMed  Google Scholar 

  • Jentsch JD, Redmond DE Jr, Elsworth JD, Taylor JR, Youngren KD, Roth RH (1997a) Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277:953–955

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Tran A, Le D, Youngren KD, Roth RH (1997b) Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal-cortical dependent cognition in the rat. Neuropsychopharmacology 17:92–99

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Taylor JR, Elsworth JD, Redmond DE Jr, Roth RH (1999a) Altered frontal cortical dopaminergic transmission in monkeys after subchronic phencyclidine exposure: involvement in frontostriatal cognitive deficits. Neurosci 90:823–832

    Article  CAS  Google Scholar 

  • Jentsch JD, Taylor JR, Redmond DE Jr, Elsworth JD, Youngren KD, Roth RH (1999b) Dopamine D4 receptor antagonist reversal of subchronic phencyclidine-induced object retrieval/detour deficits in monkeys. Psychopharmacology 142:78–84

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Roth RH, Taylor JR (2000) Object retrieval/detour deficits in monkeys produced by prior subchronic phencyclidine administration: evidence for cognitive impulsivity. Biol Psychiatry 48:415–424

    Article  CAS  PubMed  Google Scholar 

  • Kahn RS, Harvey PD, Davidson M, Keefe RS, Apter S, Neale JM, Mohs RC, Davis KL (1994) Neuropsychological correlates of central monoamine function in chronic schizophrenia: relationship between CSF metabolites and cognitive function. Schizophr Res 11:217–224

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 16:223–244

    CAS  PubMed  Google Scholar 

  • Keefe RS, Roitman SE, Harvey PD, Blum CS, DuPre RL, Prieto DM, Davidson M, Davis KL (1995) A pen-and-paper human analogue of a monkey prefrontal cortex activation task: spatial working memory in patients with schizophrenia. Schizophr Res 17:25–33

    Article  CAS  PubMed  Google Scholar 

  • Keks NA (1997) Impact of newer antipsychotics on outcomes in schizophrenia. Clin Ther 19:148–158

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP, Rolls ET (2001) Role of long-term synaptic modification in short-term memory. Hippocampus 11:240–250

    Article  CAS  PubMed  Google Scholar 

  • Knable MB, Kleinman JE, Weinberger DR (1995) Neurobiology of schizophrenia. In: Schatzberg AF, Nemeroff CB (eds) American Psychiatric Press textbook of psychopharmacology. American Psychiatric Press, Washington D.C., pp 479–499

  • Knobbout DA, Ellenbroek BA, Cools AR (1996) The influence of social structure on social isolation in amphetamine-treated Java monkeys (Macaca fascicularis). Behav Pharmacol 7:417–429

    PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Findago C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240

    CAS  PubMed  Google Scholar 

  • Le Pen G, Grottick AJ, Higgins GA, Martin JR, Jenck F, Moreau JL (2000) Spatial and associative learning deficits induced by neonatal excitotoxic hippocampal damage in rats: further evaluation of an animal model of schizophrenia. Behav Pharmacol 11:257–268

    PubMed  Google Scholar 

  • Levy R, Goldman-Rakic PS (1999) Association of storage and processing functions in the dorsolateral prefrontal cortex of the non-human primate. J Neurosci 19:5149–5158

    CAS  PubMed  Google Scholar 

  • Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6:526–531

    CAS  PubMed  Google Scholar 

  • Liddle PF (2000) Cognitive impairment in schizophrenia: its impact on social functioning. Acta Psychiatr Scand Suppl 400:11–16

    Article  CAS  PubMed  Google Scholar 

  • Liddle PF, Lane CJ, Ngan ETC (2000) Immediate effects of risperidone on cortico-striato-thalamic loops and the hippocampus. Br J Psychiatry 177:402–407

    Article  CAS  PubMed  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40:657–671

    Article  CAS  PubMed  Google Scholar 

  • Lidow MS, Goldman-Rakic PS (1994) A common action of clozapine, haloperidol, and remoxipride on D1- and D2-dopaminergic receptors in the primate cerebral cortex. Proc Natl Acad Sci USA 91:4353–4356

    CAS  PubMed  Google Scholar 

  • Lidow MS, Elsworth JD, Goldman-Rakic PS (1997) Down-regulation of the D1 and D5 dopamine receptors in the primate prefrontal cortex by chronic treatment with antipsychotic drugs. J Pharmacol Exp Ther 281:597–603

    CAS  PubMed  Google Scholar 

  • Lidow MS, Williams GV, Goldman-Rakic PS (1998) The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol Sci 19:136–140

    CAS  Google Scholar 

  • Lieberman JA (1999) Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry 46:729–739

    Article  CAS  PubMed  Google Scholar 

  • Lieberman JA, Sheitman BB, Kinon BJ (1997) Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17:205–229

    CAS  PubMed  Google Scholar 

  • Liegeois JF, Ichikawa J, Meltzer HY (2002) 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 947157–165

  • Lillrank SM, Lipska BK, Weinberger DR (1995) Neurodevelopmental animal models of schizophrenia. Clin Neurosci 3:98–104

    CAS  PubMed  Google Scholar 

  • Lillrank SM, Lipska BK, Kolachana BS, Weinberger DR (1999) Attenuated extracellular dopamine levels after stress and amphetamine in the nucleus accumbens of rats with neonatal ventral hippocampal damage. J Neural Transm 106:183–196

    PubMed  Google Scholar 

  • Linn GS, Javitt DC (2001) Phencyclidine (PCP)-induced deficits of prepulse inhibition in monkeys. Neuroreport 12:117–120

    CAS  PubMed  Google Scholar 

  • Linn GS, O’Keeffe RT, Schroeder CE, Lifshitz K, Javitt DC (1999) Behavioral effects of chronic phencyclidine in monkeys. Neuroreport 10:2789–2793

    CAS  PubMed  Google Scholar 

  • Linn GS, Negi SS, Gerum SV, Javitt DC (2003) Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys. Psychopharmacology 169(3–4):234–239

    Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals. Schizophrenia as a reality test. Neuropsychopharmacology 23:223–239

    CAS  PubMed  Google Scholar 

  • Lipska BK, Chrapusta SJ, Egan MF, Weinberger DR (1995) Neonatal excitotoxic ventral hippocampal damage alters dopamine response to mild repeated stress and to chronic haloperidol. Synapse 20:125–130

    CAS  PubMed  Google Scholar 

  • Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam B (2002) Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 27:47–54

    Article  PubMed  Google Scholar 

  • Lysaker PH, Bell MD, Bioty S, Zito WS (1996) Performance on the Wisconsin card sorting test as a predictor of rehospitalization in schizophrenia. J Nerv Ment Dis 184:319–321

    Article  CAS  PubMed  Google Scholar 

  • Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    CAS  PubMed  Google Scholar 

  • Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, Saper CB, Rauch SL (2000) Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 48:99–109

    Article  CAS  PubMed  Google Scholar 

  • Martinez ZA, Ellison GD, Geyer MA, Swerdlow NR (1999) Effects of sustained phencyclidine exposure on sensorimotor gating of startle in rats. Neuropsychopharmacology 21:28–39

    Google Scholar 

  • McGurk SR, Meltzer HY (2000) The role of cognition in vocational functioning in schizophrenia. Schizophr Res 45:175–184

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY (1999) Outcome in schizophrenia: beyond symptom reduction. J Clin Psychiatry 60 (Suppl 3):3–7

    Google Scholar 

  • Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    CAS  PubMed  Google Scholar 

  • Meltzer HY, Sumiyoshi T (2003) Atypical antipsychotic drugs improve cognition in schizophrenia. Biol Psychiatry 53:265–267

    Article  PubMed  Google Scholar 

  • Meltzer HY, Thompson PA, Lee MA, Ranjan R (1996) Neuropsychologic deficits in schizophrenia: relation to social function and effect of antipsychotic drug treatment. Neuropsychopharmacology 14:27S–33S

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Park S, Kessler R (1999) Cognition, schizophrenia, and the atypical antipsychotic drugs. Proc Natl Acad Sci USA 96:13591–13593

    CAS  PubMed  Google Scholar 

  • Miller DD, Andreasen NC, O’Leary DS, Rezai K, Watkins GL, Ponto LL, Hichwa RD (1997) Effects of antipsychotics on regional cerebral blood flow measured with positron emission tomography. Neuropsychopharmacology 17:230–240

    Article  CAS  PubMed  Google Scholar 

  • Murphy BL, Arnsten AF, Jentsch JD, Roth RH (1996) Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress-induced impairment. J Neurosci 16:7768–7775

    CAS  PubMed  Google Scholar 

  • Nakahara K, Hayashi T, Konishi S, Miyashita Y (2002) Functional MRI of macaque monkeys performing a cognitive set-shifting task. Science 295:1532–1536

    Article  CAS  PubMed  Google Scholar 

  • Ngan ETC, Lane CJ, Ruth TJ, Liddle PF (2002) Immediate and delayed effects of risperidone on cerebral metabolism in neuroleptic naïve schizophrenic patients: correlations with symptom change. J Neurol Neurosurg Psychiatry 72:106–110

    Article  CAS  PubMed  Google Scholar 

  • Nielsen EB, Eison MS, Lyon M, Iverson SD (1983a) Hallucinatory behaviors in primates produced by around-the-clock amphetamine treatment for several days via implanted capsules. Prog Clin Biol Res 131:79–100

    CAS  PubMed  Google Scholar 

  • Nielsen EB, Lyon M, Ellison G (1983b) Apparent hallucinations in monkeys during around-the-clock amphetamine for seven to fourteen days. Possible relevance to amphetamine psychosis. J Nerv Ment Dis 171:222–233

    CAS  PubMed  Google Scholar 

  • O’Donnell P, Lewis BL, Weinberger DR, Lipska BK (2002) Neonatal hippocampal damage alters electrophysiological properties of prefrontal cortical neurons in adult rats. Cereb Cortex 12:975–982

    Article  PubMed  Google Scholar 

  • Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636

    CAS  PubMed  Google Scholar 

  • Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW (1993) Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage. Brain 116:1159–1175

    PubMed  Google Scholar 

  • Palit G, Kumar R, Gupta MB, Saxena RC, Patnaik GK, Dhawan BN (1997) Quantification of behaviour in social colonies of rhesus monkey. Ind J Physiol Pharmacol 41:219–226

    CAS  Google Scholar 

  • Park S (1997) Association of an oculomotor delayed response task and the Wisconsin Card Sort Test in schizophrenic patients. Int J Psychophysiol 27:147–151

    Article  CAS  PubMed  Google Scholar 

  • Park S, Holzman PS (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49:975–982

    CAS  PubMed  Google Scholar 

  • Park S, Puschel J, Sauter BH, Rentsch M, Hell D (1999) Spatial working memory deficits and clinical symptoms in schizophrenia: a 4-month follow-up study. Biol Psychiatry 46:392–400

    Article  CAS  PubMed  Google Scholar 

  • Park S, Puschel J, Sauter BH, Rentsch M, Hell D (2003) Visual object working memory and clinical symptoms in schizophrenia. Schizophr Res 59:261–268

    Article  PubMed  Google Scholar 

  • Passingham RE (1985) Memory of monkeys (Macaca mulatta) with lesions in prefrontal cortex. Behav Neurosci 99:3–21

    CAS  PubMed  Google Scholar 

  • Perry W, Heaton RK, Potterat E, Roebuck T, Minassian A, Braff DL (2001) Working memory in schizophrenia: transient “online” storage versus executive function. Schizophr Bull 27:157–176

    CAS  PubMed  Google Scholar 

  • Petrides M (2000) The role of the mid-dorsolateral prefrontal cortex in working memory. Exp Brain Res 133:44–54

    CAS  PubMed  Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036

    CAS  PubMed  Google Scholar 

  • Petrides M, Alivisatos B, Frey S (2002) Differential activation of the human orbital, midventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli. Proc Natl Acad Sci 99:5649–5654

    Article  CAS  PubMed  Google Scholar 

  • Potkin SG, Buchsbaum MS, Jin Y, Tang C, Telford J, Friedman G, Lottenberg S, Najafi A, Gulasekaram B, Costa J et al. (1994) Clozapine effects on glucose metabolic rate in striatum and frontal cortex. J Clin Psychiatry 55(Suppl B.):63–66

    PubMed  Google Scholar 

  • Raedler TJ, Knable MB, Weinberger DR (1998) Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 8:157–161

    Article  CAS  PubMed  Google Scholar 

  • Rainey JM Jr, Crowder MK (1975) Prolonged psychosis attributed to phencyclidine: report of three cases. Am J Psychiatry 132:1076–1078

    PubMed  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (1999) Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J Neurophysiol 81:1903–1916

    CAS  PubMed  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (2000) Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20:485–494

    CAS  PubMed  Google Scholar 

  • Ricaurte GA, McCann UD (1992) Neurotoxic amphetamine analogues: effects in monkeys and implications for humans. Ann N Y Acad Sci 648:371–382

    CAS  PubMed  Google Scholar 

  • Ridley RM, Baker HF, Owen F, Cross AJ, Crow TJ (1982) Behavioural and biochemical effects of chronic amphetamine treatment in the vervet monkey. Psychopharmacology 78:245–251

    CAS  PubMed  Google Scholar 

  • Ridley RM, Baker HF, Owen F, Cross AJ, Crow TJ (1983) Behavioural and biochemical effects of chronic treatment with amphetamine in the vervet monkey. Neuropharmacology 22:551–554

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, James M, Owen AM, Sahakian BJ, Lawrence AD, McInnes L, Rabbitt PM (1998) A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery. J Int Neuropsychol Soc 4:474–490

    CAS  PubMed  Google Scholar 

  • Roberts AC, De Salvia MA, Wilkinson LS, Collins P, Muir JL, Everitt B, Robbins TW (1994) 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J Neurosci 14:2531–2544

    CAS  PubMed  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    CAS  PubMed  Google Scholar 

  • Rosano C, Krisky CM, Welling JS, Eddy WF, Luna B, Thulborn KR, Sweeney JA (2002) Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation. Cereb Cortex 12:107–115

    Article  PubMed  Google Scholar 

  • Rupniak NM, Samson NA, Steventon MJ, Iversen SD (1991) Induction of cognitive impairment by scopolamine and noncholinergic agents in rhesus monkeys. Life Sci 48:893–899

    CAS  PubMed  Google Scholar 

  • Sams-Dodd F, Newman JD (1997) Effects of administration regime on the psychotomimetic properties of d-amphetamine in the squirrel monkey (Saimiri sciureus). Pharmacol Biochem Behav 56:471–480

    Article  CAS  PubMed  Google Scholar 

  • Saunders RC, Kolachana BS, Bachevalier J, Weinberger DR (1998) Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Nature 393:169–171

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71:515–528

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1988) Dopamine enhances the neuronal activity of spatial short-term memory task in the primate prefrontal cortex. Neurosci Res 5:465–473

    Article  CAS  PubMed  Google Scholar 

  • Schindler MK, Wang L, Selemon LD, Goldman-Rakic PS, Rakic P, Csernansky JG (2002) Abnormalities of thalamic volume and shape detected in fetally irradiated rhesus monkeys with high dimensional brain mapping. Biol Psychiatry 51:827–837

    Article  PubMed  Google Scholar 

  • Schmidt CJ, Sorensen SM, Kehne JH, Carr AA, Palfreyman MG (1995) The role of 5-HT2A receptors in antipsychotic activity. Life Sci 56:2209–2222

    Article  CAS  PubMed  Google Scholar 

  • Schmitt WB, Deacon RM, Seeburg PH, Rawlins JN, Bannerman DM (2003) A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice. J Neurosci 23:3953–3959

    CAS  PubMed  Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52:805–818

    CAS  PubMed  Google Scholar 

  • Sernyak MJ, Leslie D, Rosencheck R (2003) Use of system-wide outcomes monitoring data to compare the effectiveness of atypical neuroleptic medications. Am J Psychiatry 160:310–315

    Article  PubMed  Google Scholar 

  • Sevy S, Davidson M (1995) The cost of cognitive impairment in schizophrenia. Schizophr Res 17:1–3

    Article  CAS  PubMed  Google Scholar 

  • Smith TE, Hull JW, Romanelli S, Fertuck E, Weiss KA (1999a) Symptoms and neurocognition as rate limiters in skills training for psychotic patients. Am J Psychiatry 156:1817–1818

    CAS  PubMed  Google Scholar 

  • Smith TE, Hull JW, Goodman M, Hedayat-Harris A, Willson DF, Israel LM, Munich RL (1999b) The relative influence of symptoms, insight, and neurocognition on social adjustment in schizophrenia and schizoaffective disorder. J Nerv Ment Dis 187:102–108

    Article  CAS  PubMed  Google Scholar 

  • Snyder SH (1972) Catecholamines in the brain as mediators of amphetamine psychosis. Arch Gen Psychiatry 27:169–178

    CAS  PubMed  Google Scholar 

  • Snyder SH (1973) Amphetamine psychosis: A “model” schizophrenia mediated by catecholamines. Am J Psychiatry 130:61–67

    CAS  PubMed  Google Scholar 

  • Spindler KA, Sullivan EV, Menon V, Lim KO, Pfefferbaum A (1997) Deficits in multiple systems of working memory in schizophrenia. Schizophr Res 27:1–10

    Article  CAS  PubMed  Google Scholar 

  • Stefani MR, Moghaddam B (2002) Effects of repeated treatment with amphetamine or phencyclidine on working memory in the rat. Behav Brain Res 134:267–274

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51:139–154

    CAS  PubMed  Google Scholar 

  • Sybirska E, Davachi L, Goldman-Rakic PS (2000) Prominence of direct entorhinal-CA1 pathway activation in sensorimotor and cognitive tasks revealed by 2-DG functional mapping in non-human primate. J Neurosci 20:5827–3584

    CAS  PubMed  Google Scholar 

  • Tanaka S (2002) Dopamine controls fundamental cognitive operations of multi-target spatial working memory. Neural Networks 15:573–582

    Article  PubMed  Google Scholar 

  • Tek C, Gold J, Blaxton T, Wilk C, McMahon RP, Buchanan RW (2002) Visual perceptural and working memory impairments in schizophrenia. Arch Gen Psychiatry 59:146–153

    Article  PubMed  Google Scholar 

  • Vita A, Bressi S, Perani D, Invernizzi G, Giobbio GM, Dieci M, Grarvarini M, Del Sole A, Fazio F (1995) High-resolution SPECT study of regional cerebral blood flow in drug-free and drug-naive schizophrenic patients. Am J Psychiatry 152:876–882

    CAS  PubMed  Google Scholar 

  • Vollenweider FX, Leenders KL, Scharfetter C, Antonini A, Maguire P, Missimer J, Angst J (1997) Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol 7:9–24

    CAS  PubMed  Google Scholar 

  • Weed MR, Taffe MA, Polis I, Roberts AC, Robbins TW, Koob GF, Bloom FE, Gold LH (1999) Performance norms for a rhesus monkey neuropsychological testing battery: acquisition and long-term performance. Brain Res Cognit Brain Res 8:185–201

    Article  CAS  Google Scholar 

  • Weinberger DR (1996) On the plausibility of the “neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology 14:1S–11S

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR, Gallhofer B (1997) Cognitive function in schizophrenia. Int Clin Psychopharmacol Suppl 4:S29–36

    Google Scholar 

  • Weinberger DR, Berman KF, Zec RF (1986) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43:114–125

    CAS  PubMed  Google Scholar 

  • Weinberger DR, Berman KF, Illowsky BP (1988) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monoaminergic mechanism. Arch Gen Psychiatry 45:609–615

    CAS  PubMed  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:549–550

    Article  PubMed  Google Scholar 

  • Williams GV, Rao SG, Goldman-Rakic PS (2002a) The physiological role of 5-HT2A receptors in working memory. J Neurosci 22:2843–2854

    CAS  PubMed  Google Scholar 

  • Williams GV, Vijayraghavan S, Wang M, Goldman-Rakic PS (2002b) D1 receptor modulation of recurrent excitation in prefrontal circuits recruited by working memory. Soc Neurosci Abstr 282.4

  • Wilson FA, O’Scalaidhe SP, Goldman-Rakic PS (1994) Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. Proc Natl Acad Sci USA 91:4009–4013

    CAS  PubMed  Google Scholar 

  • Woods BT (1998) Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 155:1661–1670

    CAS  PubMed  Google Scholar 

  • Young KA, Manaye KF, Liang C, Hicks PB, German DC (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47:944–953

    Article  CAS  PubMed  Google Scholar 

  • Youngren KD, Inglis FM, Pivirotto PJ, Jedema HP, Bradberry CW, Goldman-Rakic PS, Roth RH, Moghaddam B (1999) Clozapine preferentially increases dopamine release in the rhesus monkey prefrontal cortex compared with the caudate nucleus. Neuropsychopharmacology 20:403–412

    Google Scholar 

  • Zhang H-T, O’Donnell JM (2000) Effects of rolipram on scopolamine-induced impairment of working and reference memory in the radial-arm maze tests in rats. Psychopharmacology 150:311–316

    Google Scholar 

  • Zuckerman L, Rehavi M, Nachman R, Weiner I (2003) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28(10):1778–1789

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacy A. Castner.

Additional information

Dr. Goldman-Rakic died before publication of this review, which is dedicated to her memory and her vision.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castner, S.A., Goldman-Rakic, P.S. & Williams, G.V. Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacology 174, 111–125 (2004). https://doi.org/10.1007/s00213-003-1710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1710-9

Keywords

Navigation