Skip to main content

Advertisement

Log in

Central neurotensin receptor activation produces differential behavioral responses in Fischer and Lewis rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Lewis (LEW) and Fischer (F344) rats exhibit marked differences in appetitive and consummatory responses to numerous drugs, including psychostimulants. Neurotensin (NT) produces psychostimulant-like actions, which sensitize with repeated exposure, and neuroleptic-like actions; effects that are dependent on the site of microinjection. The aim of the present experiments was to assess the behavioral sensitivity of these two strains of rats to NT receptor activation.

Methods

In expt 1, locomotor activity was assessed on alternate days following an ICV injection of NT, [d-Tyr11]neurotensin (d-NT; 18 nmol/10 μl), or vehicle (days 1, 3, 5, and 7) in independent groups of LEW and F344 rats. On day 14, locomotor activity was assessed in all rats following an injection of d-amphetamine (1 mg/kg, IP). In expt 2, activity was assessed following injection into the ventral tegmental area of NT, or d-NT, (2.5 μg/hemisphere) or into the nucleus accumbens (2.5 and 5.0 μg/hemisphere).

Results

Repeated ICV injections of NT, or d-NT, produced differential behavioral effects in the two strains of rats on days 1–7; activity was initially suppressed in LEW, but less so in F344 rats, following NT. In F344, but not in LEW rats, d-NT produced a significant increase in activity. Neurotensin and d-NT sensitized LEW rats to amphetamine-induced ambulatory and non-ambulatory activity. Except for vertical activity, this effect was weaker or in the opposite direction in F344 rats. When injected into the ventral tegmental area, NT produced an increase in locomotor activity in both strains, an effect that was greater in F344 than LEW rats with d-NT. In the nucleus accumbens, NT marginally decreased activity in both strains, while d-NT produced a significant increase in F344 but not in LEW rats.

Conclusions

These results provide empirical evidence that endogenous NT neurotransmission within limbic circuitry differs in F344 and LEW rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • al-Rodhan NR, Richelson E, Gilbert JA, McCormick DJ, Kanba KS, Pfenning MA, Nelson A, Larson EW, Yaksh TL (1991) Structure-antinociceptive activity of neurotensin and some novel analogues in the periaqueductal gray region of the brainstem. Brain Res 557:227–235

    CAS  PubMed  Google Scholar 

  • Ambrosio E, Goldberg SR, Elmer GI (1995) Behavior genetic investigation of the relationship between spontaneous locomotor activity and the acquisition of morphine self-administration behavior. Behav Pharmacol 6:229–237

    CAS  PubMed  Google Scholar 

  • Bauco P, Rompré P-P (2001) Effects of neurotensin receptor activation on brain stimulation reward in Fischer 344 and Lewis rats. Eur J Pharmacol 432:57–61

    Article  CAS  PubMed  Google Scholar 

  • Betancur C, LepeeLorgeoux I, Cazillis M, Accili D, Fuchs S, Rostene W (2001) Neurotensin gene expression and behavioral responses following administration of psychostimulants and antipsychotic drugs in dopamine D-3 receptor deficient mice. Neuropsychopharmacology 24:170–182

    Article  CAS  PubMed  Google Scholar 

  • Camp DM, Browman KE, Robinson TE (1994) The effects of methamphetamine and cocaine on motor behavior and extracellular dopamine in the ventral striatum of Lewis versus Fischer 344 rats. Brain Res 668:180–193

    CAS  PubMed  Google Scholar 

  • Checler F, Vincent J-P, Kitabgi P (1983) Neurotensin analogs [d-Tyr11] and [d-Phe11]neurotensin resist degradation by brain peptidases in vitro and in vivo. J Pharmacol Exp Ther 227:743–748

    CAS  PubMed  Google Scholar 

  • Costa FG, Frussa R, Felicio LF (2001) The neurotensin receptor antagonist, SR48692, attenuates the expression of amphetamine-induced behavioural sensitisation in mice. Eur J Pharmacol 428:97–103

    Article  CAS  PubMed  Google Scholar 

  • Donoso MV, Huidobro-Toro JP, St Pierre S (1986) Gastrointestinal neurotensin receptors: contribution of the aromatic hydroxyl group in position 11 to peptide potency. Br J Pharmacol 87:483–485

    CAS  PubMed  Google Scholar 

  • Dubuc I, Costentin J, Terranova JP, Barnouin MC, Soubrie P, Le Fur G, Rostene W, Kitabgi P (1994) The nonpeptide neurotensin antagonist, SR 48692, used as a tool to reveal putative neurotensin receptor subtypes. Br J Pharmacol 112:352–354

    CAS  PubMed  Google Scholar 

  • Elmer GI, Brockington A, Gorelick DA, Carrol FI, Rice KC, Matecka D, Goldberg SR, Rothman RB (1996) Cocaine cross-sensitization to dopamine uptake inhibitors: unique effects of GBR12909. Pharmacol Biochem Behav 53:911–918

    Article  CAS  PubMed  Google Scholar 

  • Ervin GN, Birkemo LS, Nemeroff CB, Prange AJ Jr (1981) Neurotensin blocks certain amphetamine-induced behaviours. Nature 291:73–76

    CAS  PubMed  Google Scholar 

  • Feldpausch DL, Needham LM, Stone MP, Althaus JS, Yamamoto BK, Svensson KA, Merchant KM (1998) The role of dopamine D4 receptor in the induction of behavioral sensitization to amphetamine and accompanying biochemical and molecular adaptations. J Pharmacol Exp Ther 286:497–508

    CAS  PubMed  Google Scholar 

  • George FR, Goldberg SR (1988) Genetic differences in responses to cocaine. NIDA Res Monogr 88:239–249

    CAS  PubMed  Google Scholar 

  • Guitart X, Beitner-Johnson D, Marby DW, Kosten TA, Nestler EJ (1992) Fischer and Lewis rat strains differ in basal levels of neurofilament proteins and their regulation by chronic morphine in the mesolimbic dopamine system. Synapse 12:242–253

    CAS  PubMed  Google Scholar 

  • Gully D, Canton M, Boigegrain R, Jeanjean F, Molimard JC, Poncelet M, Gueudet C, Heaulme M, Leyris R, Brouard A (1993) Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc Natl Acad Sci USA 90:65–69

    CAS  PubMed  Google Scholar 

  • Gully D, Jeanjean F, Poncelet M, Steinberg R, Soubrie P, Le Fur G, Maffrand JP (1995) Neuropharmacological profile of non-peptide neurotensin antagonists. Fundam Clin Pharmacol 9:513–521

    CAS  PubMed  Google Scholar 

  • Gully D, Labeeuw B, Boigegrain R, Oury-Donat F, Bachy A, Poncelet M, Steinberg R, Suaud-Chagny MF, Santucci V, Vita N, Pecceu F, Labbe-Jullie C, Kitabgi P, Soubrie P, Le Fur G, Maffrand JP (1997) Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J Pharmacol Exp Ther 280:802–812

    CAS  PubMed  Google Scholar 

  • Horan BA, McKenzie S, Gardner EL, Lepore M, Ashby CR Jr (1997) (−)-Nicotine produces conditioned place preference in Lewis, but not Fischer 344 rats. Synapse 26:93–94

    Article  CAS  PubMed  Google Scholar 

  • Jolicoeur FB, Rioux F, Quirion R, St-Pierre-S (1981) Differential neurobehavioral effects of neurotensin and structural analogues. Peptides 2:171–175

    CAS  PubMed  Google Scholar 

  • Jolicoeur FB, St-Pierre-S, Aube C, Rivest R, Gagne MA (1984) Relationship between structure and duration of neurotensin's central action: emergence of long acting analogs. Neuropeptides 4:467–476

    CAS  PubMed  Google Scholar 

  • Jolicoeur FB, Rivest R, St-Pierre S, Gagne MA, Dumais M (1985) The effects of neurotensin and [D-Tyr11]-NT on the hyperactivity induced by intra-accumbens administration of a potent dopamine receptor agonist. Neuropeptides 6:143–156

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Duffy P (1990) Effect of acute and daily neurotensin and enkephalin treatments on extracellular dopamine in the nucleus accumbens. J Neurosci 10:2940–2949

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16:223–244

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Weber B (1988) Amphetamine injection into the ventral mesencephalon sensitizes rats to peripheral amphetamine and cocaine. J Pharmacol Exp Ther 245:1095–1102

    Google Scholar 

  • Kalivas PW, Nemeroff CB, Prange AJ Jr (1981) Increase in spontaneous motor activity following infusion of neurotensin into the ventral tegmental area. Brain Res 229:525–529

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Nemeroff CB, Prange AJ Jr (1982) Neuroanatomical site specific modulation of spontaneous motor activity by neurotensin. Eur J Pharmacol 78:471–474

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Burgess SK, Nemeroff CB, Prange AJ Jr (1983a) Behavioral and neurochemical effects of neurotensin microinjection into the ventral tegmental area of the rat. Neuroscience 8:495–505

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Widerlov E, Stanley D, Breese G, Prange AJ Jr (1983b) Enkephalin action on the mesolimbic system: a dopamine-dependent and a dopamine-independent increase in locomotor activity. J Pharmacol Exp Ther 227:229–237

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Nemeroff CB, Prange AJ Jr (1984) Neurotensin microinjection into the nucleus accumbens antagonizes dopamine-induced increase in locomotion and rearing. Neuroscience 11:919–930

    CAS  PubMed  Google Scholar 

  • Kitabgi P (1989) Neurotensin modulates dopamine neurotransmission at several levels along brain dopaminergic pathways. Neurochem Int 14:111–119

    CAS  Google Scholar 

  • Kitabgi P, Poustis C, Granier C, Van Rietschoten J, Rivier J, Morgat J-L, Freychet P (1980) Neurotensin binding to extraneural and neural receptors: comparison with biological activity and structure-activity relationships. Mol Pharmacol 18:11–19

    CAS  PubMed  Google Scholar 

  • Kosten TA, Miserendino MJD, Chi S, Nestler EJ (1994) Fischer and Lewis rat strains show differential cocaine effects in conditioned place preference and behavioral sensitization but not in locomotor activity or conditioned taste aversion. J Pharmacol Exp Ther 269:137–144

    CAS  PubMed  Google Scholar 

  • Kosten TA, Miserendino MJD, Haile CN, DeCaprio JL, Nestler EJ (1997) Acquisition and maintenance of intravenous cocaine self-administration in Lewis and Fischer inbred rat strains. Brain Res 778:418–429

    CAS  PubMed  Google Scholar 

  • Laitinen K, Crawley JN, Mefford IN, De Witte P (1990) Neurotensin and cholecystokinin microinjected into the ventral tegmental area modulate microdialysate concentrations of dopamine and metabolites in the posterior nucleus accumbens. Brain Res 523:342–346

    CAS  PubMed  Google Scholar 

  • Leonetti M, Brun P, Sotty F, Steinberg R, Soubrie P, Bert L, Renaud B, Suaud-Chagny MF (2002) The neurotensin receptor antagonist SR 142948A blocks the efflux of dopamine evoked in nucleus accumbens by neurotensin ejection into the ventral tegmental area. Naunyn-Schmiedeberg's Arch Pharmacol 365:427–433

    Article  CAS  Google Scholar 

  • Lepore M, Liu X, Savage V, Matalon D, Gardner EL (1996) Genetic differences in delta 9-tetrahydrocannabinol-induced facilitation of brain stimulation reward as measured by a rate-frequency curve-shift electrical brain stimulation paradigm in three different rat strains. Life Sci 58:PL365–PL372

    CAS  PubMed  Google Scholar 

  • Martin S, Manzanares J, Corchero J, Garcia-Lecumberri C, Crespo JA, Fuentes JA, Ambrosio E (1999) Differential basal proenkephalin gene expression in dorsal striatum and nucleus accumbens, and vulnerability to morphine self-administration in Fischer 344 and Lewis rats. Brain Res 821:350–355

    Article  CAS  PubMed  Google Scholar 

  • Meng ZH, Feldpaush DL, Merchant KM (1998) Clozapine and haloperidol block the induction of behavioral sensitization to amphetamine and associated genomic responses in rats. Mol Brain Res 61:39–50

    Article  CAS  PubMed  Google Scholar 

  • Nicot A, Rostene W, Berod A (1994) Neurotensin receptor expression in the rat forebrain and midbrain: a combined analysis by in situ hybridization and receptor autoradiography. J Comp Neurol 341:407–419

    CAS  PubMed  Google Scholar 

  • Panayi F, Dorso E, LambasSenas L, Renaud B, Scarna H, Berod A (2002) Chronic blockade of neurotensin receptors strongly reduces sensitized, but not acute, behavioral response to d-amphetamine. Neuropsychopharmacology 26:64–74

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

  • Perugini M, Vezina P (1994) Amphetamine administered to the ventral tegmental area sensitizes rats to the locomotor effects of nucleus accumbens amphetamine. J Pharmacol Exp Ther 270:690–696

    Google Scholar 

  • Ranaldi R, Bauco P, McCormick SE, Cools AR, Wise RA (2001) Equal sensitivity to cocaine reward in addiction-prone and addiction-resistant rat genotypes. Behav Pharmacol 12:527–534

    CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96:103–114

    CAS  PubMed  Google Scholar 

  • Rompré P-P (1997) Repeated activation of neurotensin receptors sensitizes to the stimulant effect of amphetamine. Eur J Pharmacol 328:131–134

    Article  PubMed  Google Scholar 

  • Rompré P-P, Perron S (2000) Evidence for a role of endogenous neurotensin in the initiation of amphetamine sensitization. Neuropharmacology 39:1880–1892

    Article  PubMed  Google Scholar 

  • Rompré P-P, Boye SM, Moisan J (1998) Activation of neurotensin receptors in the prefrontal cortex stimulates midbrain dopamine cell firing. Eur J Pharmacol 341:169–172

    Article  PubMed  Google Scholar 

  • Seroogy KB, Mehta A, Fallon JH (1987) Neurotensin and cholecystokinin coexistence within neurons of the ventral mesencephalon: Projections to forebrain. Exp Brain Res 68:277–289

    CAS  PubMed  Google Scholar 

  • Steinberg R, Brun P, Fournier M, Souilhac J, Rodier D, Mons G, Terranova JP, Le Fur G, Soubrie P (1994) SR 48692, a non-peptide neurotensin receptor antagonist differentially affects neurotensin-induced behaviour and changes in dopaminergic transmission. Neuroscience 59:921–929

    CAS  PubMed  Google Scholar 

  • Steinberg R, Brun P, Souilhac J, Bougault I, Leyris R, Le Fur G, Soubrie P (1995) Neurochemical and behavioural effects of neurotensin vs [d-Tyr11]neurotensin on mesolimbic dopaminergic function. Neuropeptides 28:43–50

    CAS  PubMed  Google Scholar 

  • Suzuki T, Otani K, Koike Y, Misawa M (1988a) Genetic differences in preferences for morphine and codeine in Lewis and Fischer 344 inbred rat strains. Jpn J Pharmacol 47:425–431

    CAS  PubMed  Google Scholar 

  • Suzuki T, Fukagawa Y, Yoshii T, Yanaura S (1988b) Effect of opioid agonist-antagonist interaction on morphine dependence in rats. Life Sci 42:2729–2737

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, George FR, Meisch RA (1988c) Differential establishment and maintenance of oral ethanol reinforced behavior in Lewis and Fischer 344 inbred rat strains. J Pharmacol Exp Ther 245:164–170

    Google Scholar 

  • Suzuki T, George FR, Meisch RA (1992) Etonitazene delivered orally serves as a reinforcer for Lewis but not Fischer 344 rats. Pharmacol Biochem Behav 42:579–586

    CAS  PubMed  Google Scholar 

  • Wagstaff JD, Bush LG, Gibb JW, Hanson GR (1994) Endogenous neurotensin antagonizes methamphetamine-enhanced dopaminergic activity. Brain Res 665:237–244

    CAS  PubMed  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    CAS  PubMed  Google Scholar 

  • Wolf ME, Dahlin SL, Hu X-T, Xue C-J, White K (1995) Effects of lesions of prefrontal cortex, amygdala, or fornix on behavioral sensitization to amphetamine: comparison with n-methyl-d-aspartate antagonists. Neuroscience 69:417–439

    CAS  PubMed  Google Scholar 

  • Zahm DS, Williams ES, Krause JE, Welch MA, Grosu DS (1998) Distinct and interactive effects of d-amphetamine and haloperidol on levels of neurotensin and its mRNA in subterritories in the dorsal and ventral striatum of the rat. J Comp Neurol 400:487–503

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Canadian Institutes of Health Research (CIHR) to PPR and a Post-Doctoral Research Fellowship to P.B. from the CIHR and The Schizophrenia Society of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pat Bauco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauco, P., Rompré, PP. Central neurotensin receptor activation produces differential behavioral responses in Fischer and Lewis rats. Psychopharmacology 168, 253–261 (2003). https://doi.org/10.1007/s00213-003-1436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1436-8

Keywords

Navigation