Skip to main content
Log in

Multirate generalized additive Runge Kutta methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This work constructs a new class of multirate schemes based on the recently developed generalized additive Runge–Kutta (GARK) methods (Sandu and Günther, SIAM J Numer Anal, 53(1):17–42, 2015). Multirate schemes use different step sizes for different components and for different partitions of the right-hand side based on the local activity levels. We show that the new multirate GARK family includes many well-known multirate schemes as special cases. The order conditions theory follows directly from the GARK accuracy theory. Nonlinear stability and monotonicity investigations show that these properties are inherited from the base schemes provided that additional coupling conditions hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Günther, M., Hachtel, Ch., Sandu, A.: Multirate GARK schemes for multiphysical problems. In: Bartel, A. et al. (ed.) Proceedings of the SCEE2014. Springer, Berlin (2015) (to be published)

  2. Günther, M., Sandu, A.: Multirate GARK methods. In: Technical Report CSL-TR-6/2013, Virginia Tech, Computational Science Laboratory (2013). arXiv:1310.6055

  3. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Higueras, I.: Monotonicity for Runge–Kutta methods: inner product norms. J. Sci. Comput. 24, 97–117 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Higueras, I.: Strong stability for additive Runge–Kutta methods. SIAM J. Numer. Anal. 44, 1735–1758 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hundsdorfer, W., Mozartova, A., Savcenco, V.: Monotonicity conditions for multirate and partitioned explicit Runge–Kutta methods. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, pp. 177–195. Springer, New York (2013)

  7. Kennedy, Ch., Carpenter, M.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Knoth, O., Wolke, R.: Implicit–explicit Runge–Kutta methods for computing atmospheric reactive flows. Appl. Numer. Math. 28, 327–341 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kraaijevanger, J.F.B.M.: Contractivity of Runge–Kutta methods. BIT Numer. Math. 31, 482–528 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kvaerno, A., Rentrop, P.: Low Order Multirate Runge–Kutta Methods in Electric Circuit Simulation, Preprint 99/1. University of Karlsruhe, IWRMM, Karlsruhe (1999)

    Google Scholar 

  11. Sandu, A., Günther, M.: A generalized-structure approach to additive Runge–Kutta methods. SIAM J. Numer. Anal. 53(1), 17–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Savcenco, V.: Construction of high-order multirate Rosenbrock methods for stiff ODEs. In: Technical Report MAS-E0716, Centrum voor Wiskunde en Informatica (2007)

  13. Savcenco, V.: Comparison of the asymptotic stability properties for two multirate strategies. J. Comput. Appl. Math. 220, 508–524 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Savcenco, V.: Construction of a multirate Rodas method for stiff ODEs. J. Comput. Appl. Math. 225, 323–337 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for parabolic PDE. In: Technical Report MAS-E0516, Centrum voor Wiskundeen Informatica (2005)

  16. Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for stiff ODEs. BIT 47, 137–155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Multirate Runge–Kutta schemes for advection equations. J. Comput. Appl. Math. 226, 345–357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Multirate implicit–explicit time integration schemes in atmospheric modelling. In: AIP Conference Proceedings, vol. 1281. International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2010, p. 1831 (2010)

  19. Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Implementation of splitting methods for air pollution modeling. Geosci. Model Dev. Discuss. 4, 2937–2972 (2011)

    Article  Google Scholar 

  20. Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Numerical solution of multiscale problems in atmospheric modeling. Appl. Numer. Math. 62, 1531–1543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wensch, J., Knoth, O., Galant, A.: Multirate infinitesimal step methods for atmospheric flow simulation. BIT 49, 449–473 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of A. Sandu has been supported in part by NSF through awards NSF OCI-8670904397, NSF CCF-0916493, NSF DMS-0915047, NSF CMMI-1130667, NSF CCF-1218454, AFOSR FA9550-12-1-0293-DEF, AFOSR 12-2640-06, and by the Computational Science Laboratory at Virginia Tech. The work of M. Günther has been supported in part by BMBF through grant 03MS648E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Günther.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günther, M., Sandu, A. Multirate generalized additive Runge Kutta methods. Numer. Math. 133, 497–524 (2016). https://doi.org/10.1007/s00211-015-0756-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0756-z

Mathematics Subject Classification

Navigation