Skip to main content
Log in

Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Structure-preserving numerical schemes for a nonlinear parabolic fourth-order equation, modeling the electron transport in quantum semiconductors, with periodic boundary conditions are analyzed. First, a two-step backward differentiation formula (BDF) semi-discretization in time is investigated. The scheme preserves the nonnegativity of the solution, is entropy stable and dissipates a modified entropy functional. The existence of a weak semi-discrete solution and, in a particular case, its temporal second-order convergence to the continuous solution is proved. The proofs employ an algebraic relation which implies the G-stability of the two-step BDF. Second, an implicit Euler and \(q\)-step BDF discrete variational derivative method are considered. This scheme, which exploits the variational structure of the equation, dissipates the discrete Fisher information (or energy). Numerical experiments show that the discrete (relative) entropies and Fisher information decay even exponentially fast to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barrett, J., Blowey, J., Garcke, H.: Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80, 525–556 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bleher, P., Lebowitz, J., Speer, E.: Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations. Commun. Pure Appl. Math. 47, 923–942 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bukal, M., Jüngel, A., Matthes, D.: A multidimensional nonlinear sixth-order quantum diffusion equation. Ann. Inst. H. Poincaré Anal. non linéaire 30, 337–365 (2013)

    Article  MATH  Google Scholar 

  4. Carrillo, J.A., Jüngel, A., Tang, S.: Positive entropic schemes for a nonlinear fourth-order equation. Discrete Contin. Dyn. Syst. B 3, 1–20 (2003)

    MATH  Google Scholar 

  5. Chainais-Hillairet, C., Gisclon, M., Jüngel, A.: A finite-volume scheme for the multidimensional quantum drift-diffusion model for semiconductors. Numer. Methods Part. Differ. Eqs. 27, 1483–1510 (2011)

    Article  MATH  Google Scholar 

  6. Chainais-Hillairet, C., Jüngel, A., Schuchnigg, S.: Entropy-dissipative discretization of nonlinear diffusion equations and discrete Beckner inequalities (2013, Preprint). arXiv:1303.3791

  7. Dahlquist, G.: \(G\)-stability is equivalent to \(A\)-stability. BIT 18, 384–401 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Degond, P., Méhats, F., Ringhofer, C.: Quantum energy-transport and drift-diffusion models. J. Stat. Phys. 118, 625–665 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Derrida, B., Lebowitz, J., Speer, E., Spohn, H.: Fluctuations of a stationary nonequilibrium interface. Phys. Rev. Lett. 67, 165–168 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Düring, B., Matthes, D., Milišić, J.-P.: A gradient flow scheme for nonlinear fourth order equations. Discrete Contin. Dyn. Syst. B 14, 935–959 (2010)

    Article  MATH  Google Scholar 

  11. Emmrich, E.: Error of the two-step BDF for the incompressible Navier–Stokes problem. M2AN Math. Model. Numer. Anal. 38, 757–764 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Emmrich, E.: Stability and error of the variable two-step BDF for semilinear parabolic problems. J. Appl. Math. Comput. 19, 33–55 (2005)

    Google Scholar 

  13. Emmrich, E.: Two-step BDF time discretization of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations. Comput. Methods Appl. Math. 9, 37–62 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Furihata, D., Matsuo, T.: Discrete Variational Derivative Method. Chapman and Hall/CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  15. Gianazza, U., Savaré, G., Toscani, G.: The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation. Arch. Ration. Mech. Anal. 194, 133–220 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Girault, V., Raviart, P.-A.: Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Mathematics. Springer, Berlin (1981)

    Google Scholar 

  17. Glitzky, A., Gärtner, K.: Energy estimates of continuous and discretized electro-reaction-diffusion systems. Nonlinear Anal. Theory Methods Appl. 70, 788–805 (2009)

    Article  MATH  Google Scholar 

  18. Grün, G.: On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions. Math. Comput. 72, 1251–1279 (2003)

    Article  MATH  Google Scholar 

  19. Grün, G., Rumpf, M.: Nonnegativity preserving convergent schemes for the thin film equation. Numer. Math. 87, 113–152 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hill, A., Süli, E.: Approximation of the global attractor for the incompressible Navier–Stokes equations. IMA J. Numer. Anal. 20, 633–667 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jüngel, A.: Transport Equations for Semiconductors. Lecture Notes in Physics. Springer, Berlin (2009)

    Book  Google Scholar 

  22. Jüngel, A., Matthes, D.: The Derrida–Lebowitz–Speer–Spohn equation: existence, non-uniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39, 1996–2015 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jüngel, A., Milišić, J.-P.: A sixth-order nonlinear parabolic equation for quantum systems. SIAM J. Math. Anal. 41, 1472–1490 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jüngel, A., Pinnau, R.: Global non-negative solutions of a nonlinear fourth-order parabolic equation for quantum systems. SIAM J. Math. Anal. 32, 760–777 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jüngel, A., Pinnau, R.: A positivity preserving numerical scheme for a nonlinear fourth-order parabolic equation. SIAM J. Numer. Anal. 39, 385–406 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jüngel, A., Pinnau, R.: Convergent semidiscretization of a nonlinear fourth order parabolic system. M2AN Math. Model. Numer. Anal. 37, 277–289 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jüngel, A., Violet, I.: First-order entropies for the Derrida–Lebowitz–Speer–Spohn equation. Discrete Contin. Dyn. Syst. B 8, 861–877 (2007)

    Article  MATH  Google Scholar 

  28. Kreth, H.: Time-discretisations for nonlinear evolution equations. In: Numerical Treatment of Differential Equations in Applications (Proc. Meeting, Math. Res. Center, Oberwolfach, 1977), pp. 57–63. Lecture Notes in Mathematics, vol. 679. Springer, Berlin (1978)

  29. Moore, P.: A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension. SIAM J. Numer. Anal. 31, 149–169 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Palais, R.S., Palais, R.A.: A Web Companion for Differential Equations, Mechanics, and Computation. http://ode-math.com

  31. Westdickenberg, M., Wilkening, J.: Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations. M2AN Math. Model. Numer. Anal. 44, 133–166 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Willett, D., Wong, J.: On the discrete analogues of some generalizations of Gronwall’s inequality. Monatsh. Math. 69, 362–367 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhornitskaya, L., Bertozzi, A.: Positivity-preserving numerical schemes for lubrication-type equations. SIAM J. Numer. Anal. 37, 523–555 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel.

Additional information

M. Bukal and A. Jüngel acknowledge partial support from the Austrian Science Fund (FWF), Grants P20214, P22108, and I395, and the Austrian-French Project of the Austrian Exchange Service (ÖAD). M. Bukal is currently supported by the European Communities Seventh Framework Programme under Grant 285939 (ACROSS).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukal, M., Emmrich, E. & Jüngel, A. Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation. Numer. Math. 127, 365–396 (2014). https://doi.org/10.1007/s00211-013-0588-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0588-7

Mathematics Subject Classification (2000)

Navigation