Skip to main content

Advertisement

Log in

On the Meany inequality with applications to convergence analysis of several row-action iteration methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The Meany inequality gives an upper bound in the Euclidean norm for a product of rank-one projection matrices. In this paper we further derive a lower bound related to this inequality. We discuss the internal relationship between the upper bounds given by the Meany inequality and by the inequality in Smith et al. (Bull Am Math Soc 83:1227–1270, 1977) in the finite dimensional real linear space. We also generalize the Meany inequality to the block case. In addition, by making use of the block Meany inequality, we improve existing results and establish new convergence theorems for row-action iteration schemes such as the block Kaczmarz and the Householder–Bauer methods used to solve large linear systems and least-squares problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, M.: On the approximate solution of linear algebraic equations. Bulletin de L’Academic Polonaise des Sciences, CL. III 5, 365–370 (1957)

    MathSciNet  MATH  Google Scholar 

  2. Ansorge, R.: Connections between the Cimmino-method and the Kaczmarz method for the solution of singular and regular systems of equations. Computing 33, 367–375 (1984)

    Article  MathSciNet  Google Scholar 

  3. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.-Z., Jin, C.-H.: Column-decomposed relaxation methods for the overdetermined systems of linear equations. Int. J. Appl. Math. 13, 71–82 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  6. Björck, Å., Elfving, T.: Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations. BIT Numer. Math. 19, 145–163 (1979)

    Article  MATH  Google Scholar 

  7. Bramley, R., Sameh, A.: Row projection methods for large nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 168–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezinski, C.: Projection methods for linear systems. J. Comput. Appl. Math. 77, 35–51 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezinski, C.: Projection Methods for Systems of Equations. Elsevier Science B.V., Amsterdam (1997)

    MATH  Google Scholar 

  10. Brezinski, C.: Acceleration procedures for matrix iterative methods. Numer. Algorithms 25, 63–73 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23, 444–466 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Censor, Y.: Parallel application of block-iterative methods in medical imaging and radiation therapy. Math. Program. 42, 307–325 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cimmino, G.: Calcolo Approssimato Per Le Soluzioni Dei Sistemi Di Equazioni Lineari. La Ricerca Scientifica II(1), 326–333 (1938)

    MathSciNet  Google Scholar 

  14. Deutsch, F.: Rate of convergence of the method of alternating projections. Int. Ser. Numer. Math. 72, 96–107 (1985)

    Google Scholar 

  15. Deutsch, F., Hundal, H.: The rate of convergence for the method of alternating projections. II. J. Math. Anal. Appl. 205, 381–405 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galántai, A.: Projection and Projection Methods. Kluwer Academic Publishers, Boston (2004)

    MATH  Google Scholar 

  17. Gastinel, N.: Procédé itératif pour la résolution numérique d’un systéme d’équations linéaires. C. R. Acad. Sci. Paris 246, 2571–2574 (1958)

    MathSciNet  MATH  Google Scholar 

  18. Golub, G.H., Van Loan, C.F.: Matrix Computations., 3rd edn. Johns Hopkins University Press, Baltimore and London (1996)

    Google Scholar 

  19. Hayami, K., Yin, J.-F., Ito, T.: GMRES methods for least squares problems. SIAM J. Matrix Anal. Appl. 31, 2400–2430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Householder, A.S., Bauer, F.L.: On certain iterative methods for solving linear systems. Numer. Math. 2, 55–59 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaczmarz, S.: Angenäherte Auflösung von Systemen Linearer Gleichungen. Bull. Int. Acad. Polon. Sci. Lett. A 35, 355–357 (1937)

    Google Scholar 

  22. Kayalar, S., Weinert, H.L.: Error bounds for the method of alternating projections. Math. Control Signals Syst. 1, 43–59 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meany, R.K.: A matrix inequality. SIAM J. Numer. Anal. 6, 104–107 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morikuni, K., Hayami, K.: Inner-iteration Krylov subspace methods for least squares problems. NII Technical Reports. National Institute of Informatics, NII-2011-001E, 1–27 (2011)

  25. Popa, C.: Extensions of block-projections methods with relaxation parameters to inconsistent and rank-deficient least-squares problems. BIT Numer. Math. 38, 151–176 (1998)

    Google Scholar 

  26. Popa, C.: Block-projections algorithms with blocks containing mutually orthogonal rows and columns. BIT Numer. Math. 39, 323–338 (1999)

    Article  MATH  Google Scholar 

  27. Popa, C.: Constrained Kaczmarz extended algorithm for image reconstruction. Linear Algebra Appl. 429, 2247–2267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  29. Saad, Y., van der Vorst, H.A.: Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 123, 1–33 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Smith, K.T., Solmon, D.C., Wagner, S.L.: Practical and mathematical aspects of the problem of reconstructing objects from radiographs. Bull. Am. Math. Soc. 83, 1227–1270 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Spakman, W., Nolet, G.: Imaging algorithms, accuracy and resolution in delay time tomography. In: Vlaar, N.J., Nolet, N., Wortel, M., Cloetingh, S. (eds.) Mathematical Geophysics: A Survey of Recent Developments in Seismology and Geodynamics, pp. 155–188. Reidel, Dordrecht (1987)

  32. Tanabe, K.: Projection method for solving a singular system of linear equations and its applications. Numer. Math. 17, 203–214 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  33. Trummer, M.R.: Reconstructing pictures from projections: on the convergence of the ART algorithm with relaxation. Computing 26, 189–195 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Trummer, M.R.: SMART-an algorithm for reconstructing pictures from projections. Z. Angew. Math. Phys 34, 746–753 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Whitney, T.M., Meany, R.K.: Two algorithms related to the method of steepest descent. SIAM J. Numer. Anal. 4, 109–118 (1967)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Zhi Bai.

Additional information

Supported by The National Natural Science Foundation for Creative Research Groups (No. 11021101), The Hundred Talent Project of Chinese Academy of Sciences, The National Basic Research Program (No. 2011CB309703), and The Natural Science Foundation of Shandong Province (No. 2008A07), People’s Republic of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, ZZ., Liu, XG. On the Meany inequality with applications to convergence analysis of several row-action iteration methods. Numer. Math. 124, 215–236 (2013). https://doi.org/10.1007/s00211-012-0512-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0512-6

Mathematics Subject Classification (2000)

Navigation