Skip to main content
Log in

Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present an efficient and easy to implement approach to solving the semidiscrete equation systems resulting from time discretization of nonlinear parabolic problems with discontinuous Galerkin methods of order \(r\). It is based on applying Newton’s method and decoupling the Newton update equation, which consists of a coupled system of \(r+1\) elliptic problems. In order to avoid complex coefficients which arise inevitably in the equations obtained by a direct decoupling, we decouple not the exact Newton update equation but a suitable approximation. The resulting solution scheme is shown to possess fast linear convergence and consists of several steps with same structure as implicit Euler steps. We construct concrete realizations for order one to three and give numerical evidence that the required computing time is reduced significantly compared to assembling and solving the complete coupled system by Newton’s method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Becker, R., Meidner, D., Vexler, B.: Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22(5), 813–833 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Besier, M., Rannacher, R.: Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow. Int. J. Numer. Methods Fluids 458, 2735–2757 (2012)

    MathSciNet  Google Scholar 

  3. Brezinski, C., Van Iseghem, J.: A taste of Padé approximation. In: Acta numerica, 1995, Acta Numer., pp. 53–103. Cambridge University Press, Cambridge (1995)

  4. Chrysafinos, K.: Discontinuous Galerkin approximations for distributed optimal control problems constrained by parabolic PDEs. Int. J. Numer. Anal. Model. 4(3–4), 690–712 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia, PA (2002)

  6. Dunford, N., Schwartz, J.T.: Linear Operators: Part I. Wiley Classics Library. Wiley, New York (1988)

    Google Scholar 

  7. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28(1), 43–77 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems II: Optimal error estimates in \(L_\infty L_2\) and \(L_\infty L_\infty \). SIAM J. Numer. Anal. 32(3), 706–740 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eriksson, K., Johnson, C., Thomée, V.: Time discretization of parabolic problems by the discontinuous Galerkin method. M2AN Math. Model. Numer. Anal. 19, 611–643 (1985)

    MATH  Google Scholar 

  10. Frank, R., Schneid, J., Überhuber, C.W.: Order results for implicit Runge–Kutta methods applied to stiff systems. SIAM J. Numer. Anal. 22(3), 515–534 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hairer, E., Wanner, G.: Stiff differential equations solved by Radau methods. J. Comput. Appl. Math. 111(1–2), 93–111 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hussain, S., Schieweck, F., Turek, S.: Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation. J. Numer. Math. 19(1), 41–62 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lang, J.: Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Lecture Notes in Computational Science and Engineering, vol. 16. Springer, Berlin (2001)

  14. Lesaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–123. Academic Press, New York (1974)

  15. Meidner, D., Vexler, B.: Adaptive space–time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46(1), 116–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meidner, D., Vexler, B.: A priori error estimates for space–time finite element approximation of parabolic optimal control problems. Part I: problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meidner, D., Vexler, B.: A priori error estimates for space–time finite element approximation of parabolic optimal control problems. Part II: problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meidner, D., Vexler, B.: A priori error analysis of the Petrov–Galerkin Crank–Nicolson Scheme for parabolic optimal control problems. SIAM J. Control Optim. 49(5), 2183–2211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Neitzel, I., Vexler, B.: A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120(2), 345–386 (2011)

    Article  MathSciNet  Google Scholar 

  20. Perron, O.: Die Lehre von den Kettenbrüchen. Band II. Analytisch-funktionentheoretische Kettenbrüche, 3rd edn. B. G. Teubner Verlagsgesellschaft, Stuttgart (1957)

  21. Raymond, J.P., Zidani, H.: Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39(2), 143–177 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schmich, M., Vexler, B.: Adaptivity with dynamic meshes for space–time finite element discretizations of parabolic equations. SIAM J. Sci. Comput. 30(1), 369–393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schötzau, D., Schwab, C.: Time discretization of parabolic problems by the \(hp\)-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38(3), 837–875 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schötzau, D., Wihler, T.: A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations. Numer. Math. 115, 475–509 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gascoigne: The finite element toolkit. http://www.gascoigne.uni-hd.de

  26. RoDoBo: A C++ library for optimization with stationary and nonstationary PDEs with interface to Gascoigne [25]. http://www.rodobo.uni-hd.de

  27. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Spinger Series in Computational Mathematics, vol. 25. Springer, Berlin (2006)

  28. Wanner, G., Hairer, E., Nørsett, S.P.: Order stars and stability theorems. BIT 18(4), 475–489 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wathen, A.J.: Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer. Anal. 7(4), 449–457 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Werder, T., Gerdes, K., Schötzau, D., Schwab, C.: \(hp\)-Discontinuous Galerkin time stepping for parabolic problems. Comput. Methods Appl. Mech. Engrg. 190(49–50), 6685–6708 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987) (Translated from the German by C.B. Thomas and M.J. Thomas)

  32. Ypma, T.J.: Local convergence of inexact Newton methods. SIAM J. Numer. Anal. 21(3), 583–590 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Andreas Springer gratefully acknowledges financial support from the Munich Centre of Advanced Computing and the International Graduate School of Science and Engineering at the Technische Universität München.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Springer.

Appendix A: Complete time stepping schemes for dG(2) and dG(3)

Appendix A: Complete time stepping schemes for dG(2) and dG(3)

1.1 A.1 Scheme for dG(2)

First, the solution component \(\widetilde{W}_2^l\) is computed by the three linear solution steps

$$\begin{aligned} \left( M + \root 3 \of {\frac{1}{60}} \, k_m\bar{A} \right) \widetilde{V}_1^l&= R_0^l+R_1^l+R_2^l + \frac{1}{10} k_m\bar{A} M^{-1} \left(-4R_0^l+R_1^l +6R_2^l \right) \nonumber \\&\qquad + \frac{1}{40} k_m^2 \bar{A} M^{-1} \bar{A} M^{-1} \left(2R_0^l-R_1^l+6R_2^l \right), \nonumber \\ \left( M + \root 3 \of {\frac{1}{60}} \, k_m\bar{A} \right) \widetilde{V}_2^l&= M \widetilde{V}_1^l, \\ \left( M + \root 3 \of {\frac{1}{60}} \, k_m\bar{A} \right) \widetilde{W}_2^l&= M \widetilde{V}_2^l,\nonumber \end{aligned}$$
(19)

where \( \widetilde{V}_1^l\) and \(\widetilde{V}_2^l\) are temporary values. For the other two components, backward substitution gives the linear equations

$$\begin{aligned} \begin{aligned} \left( M +\frac{1}{10}k_m\bar{A} \right) \widetilde{W}_0^l&= \frac{6}{5} R_0^l - \frac{3}{10} R_1^l + \frac{6}{5} R_2^l -\frac{1}{5} \left(M + \frac{1}{2} k_m\bar{A} \right) \widetilde{W}_2^l,\\ \left( M +\frac{1}{10}k_m\bar{A} \right) \widetilde{W}_1^l&= \frac{3}{8} R_1^l-\frac{3}{2} R_2^l +5 M \left(\widetilde{W}_0^l + \widetilde{W}_2^l \right)+ k_m\bar{A} \left(- \frac{3}{4} \widetilde{W}_0^l +\frac{7}{4} \widetilde{W}_2^l \right). \end{aligned} \end{aligned}$$
(20)

1.2 A.2 Scheme for dG(3)

To obtain the solution component \(\widetilde{W}_3^l\), we solve the four linear equations

$$\begin{aligned} \left( M + \root 4 \of {\frac{1}{840}} \, k_m\bar{A} \right) \widetilde{V}_1^l&= R_0^l+ R_1^l+ R_2^l + R_3^l \nonumber \\&\quad + \frac{1}{21} k_m\bar{A} M^{-1} \left(-9 R_0^l-2 R_1^l + 5 R_2^l + 12 R_3^l \right) \nonumber \\&\quad + \frac{1}{126} \left(k_m\bar{A} M^{-1} \right)^2 \left(9 R_0^l- 2 R_1^l+ R_2^l + 18 R_3^l \right)\nonumber \\&\quad {+} \frac{1}{5670} \left(k_m\bar{A} M^{-1}\! \right)^3 \left(\! -27 R_0^l +8 R_1^l-17 R_2^l + 108 R_3^l \!\right), \nonumber \\ \left( M + \root 4 \of {\frac{1}{840}} \, k_m\bar{A} \right) \widetilde{V}_2^l&= M \widetilde{V}_1^l, \\ \left( M + \root 4 \of {\frac{1}{840}} \, k_m\bar{A} \right) \widetilde{V}_3^l&= M \widetilde{V}_2^l, \nonumber \\ \left( M + \root 4 \of {\frac{1}{840}} \, k_m\bar{A} \right) \widetilde{W}_3^l&= M \widetilde{V}_3^l, \nonumber \end{aligned}$$
(21)

with temporary variables \(\widetilde{V}_1^l\), \(\widetilde{V}_2^l\) and \(\widetilde{V}_3^l\). The remaining components are given by

$$\begin{aligned} \begin{aligned} \left(M + \frac{2}{13+\sqrt{29}} \, k_m\bar{A} \right) \widetilde{V}^{l}_{4}&= G_0^l,\quad \left(M + \frac{2}{13-\sqrt{29}} \, k_m\bar{A}\right) \widetilde{W}_0^l = M\widetilde{V}_4^l, \\ \left(M + \frac{2}{13-\sqrt{29}} \, k_m\bar{A} \right)\widetilde{W}_1^l&= G_1^l,\quad \left(M + \frac{2}{13-\sqrt{29}} \, k_m\bar{A} \right)\widetilde{W}_2^l = G_2^l \end{aligned} \end{aligned}$$
(22)

with another temporary value \(\widetilde{V}_4^l\) and the right hand sides

$$\begin{aligned} G_0^l&:= \frac{26}{35}R_0^l -\frac{628}{945} R_1^l + \frac{142}{945} R_2^l - \frac{44}{35} R_3^l \\&+k_m\bar{A} M^{-1} \left( \frac{18}{35} R_0^l - \frac{4}{45} R_1^l+\frac{22}{315} R_2^l - \frac{12}{35} R_3^l \right) \\&+\frac{9}{35} M \widetilde{W}_3^l + k_m\bar{A} \left( \frac{4}{35} \widetilde{W}_3^l + \frac{1}{70} k_mM^{-1} \bar{A} \widetilde{W}_3^l \right), \\ G_1^l&:= \frac{1844-52 \sqrt{29}}{945} R_0^l + \frac{4568+1256 \sqrt{29}}{25515} R_1^l \\&+ \frac{5548-284 \sqrt{29}}{25515} R_2^l + \frac{-536+88\sqrt{29}}{945} R_3^l \\&+ M \left(\frac{-26+2 \sqrt{29}}{27} \widetilde{W}_0^l + \frac{11-18 \sqrt{29}}{945} \widetilde{W}_3^l \right)\\&+ k_m\bar{A} \left(- \frac{4}{27} \widetilde{W}_0^l + \frac{23-9 \sqrt{29}}{1890} \widetilde{W}_3^l \right),\\ G_2^l&:= \left(\frac{116}{11025} -\frac{2\sqrt{29}}{1225} \right)R_0^l + \left(\frac{116252}{297675}+\frac{1168\sqrt{29}}{99225} \right)R_1^l \\&+ \left(\frac{196822}{297675}+\frac{3548 \sqrt{29}}{99225} \right)R_2^l + \left(-\frac{9404}{11025} + \frac{64 \sqrt{29}}{3675} \right)R_2^l\\&+ M \left(\frac{-257-9\sqrt{29}}{280} \widetilde{W}_1^l + \frac{-6317+2691 \sqrt{29}}{88200} \widetilde{W}_3^l \right)\\&+ k_m\bar{A} \left(\frac{1349+23 \sqrt{29}}{9800} \widetilde{W}_1^l + \frac{-3023+279 \sqrt{29}}{88200} \widetilde{W}_3^l \right). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, T., Springer, A. & Vexler, B. Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems. Numer. Math. 124, 151–182 (2013). https://doi.org/10.1007/s00211-012-0511-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0511-7

Mathematics Subject Classification (2000)

Navigation