Skip to main content

Advertisement

Log in

Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We derive new trace inequalities for NURBS-mapped domains. In addition to Sobolev-type inequalities, we derive discrete trace inequalities for use in NURBS-based isogeometric analysis. All dependencies on shape, size, polynomial degree, and the NURBS weighting function are precisely specified in our analysis, and explicit values are provided for all bounding constants appearing in our estimates. As hexahedral finite elements are special cases of NURBS, our results specialize to parametric hexahedral finite elements, and our analysis also generalizes to T-spline-based isogeometric analysis. We compare the bounding constants appearing in our explicit trace inequalities with numerically computed optimal bounding constants, and we discuss application of our results to a Laplace problem. We finish this paper with a brief exploration of so-called patch-wise trace inequalities for isogeometric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, London (1975)

    MATH  Google Scholar 

  2. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arrieta, J.M., Rodríguez-Bernal, A., Rossi, J.D.: The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary. Proc. R. Soc. Edinb. Sect. A Math. 138, 223–237 (2008)

    Article  MATH  Google Scholar 

  4. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229–263 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid-structure interaction: Theory, algorithms, and computations. Comput. Mech. 43, 3–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazilevs, Y., da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16, 1–60 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bazilevs, Y., Michler, C.M., Calo, V.M., Hughes, T.J.R.: Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput. Methods Appl. Mech. Eng. 196, 4853–4862 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bazilevs, Y., Michler, C.M., Calo, V.M., Hughes, T.J.R.: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly-enforced boundary conditions on unstretched meshes. Comput. Methods Appl. Mech. Eng. 199, 780–790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bebendorf, M.: A note on the Poincaré inequality for convex domains. Zeitschrift für Analysis und ihre Anwendungen 22, 751–756 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. 138, 213–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for \(h-p-k\) refinement in isogeometric analysis. Numerische Mathematik 118, 271–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buffa, A., Sangalli, G., Vázquez, R.: Isogeometric analysis in electromagnetics: B-splines approximation. Comput. Methods Appl. Mech. Eng. 199, 1143–1152 (2010)

    Article  MATH  Google Scholar 

  13. Burkhart, D., Hamann, B., Umlauf, G.: Iso-geometric analysis based on Catmull-Clark subdivision solids. Comput. Graph. Forum 29, 1575–1584 (2010)

    Article  Google Scholar 

  14. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric analysis: Toward integration of CAD and FEA. Wiley, New York (2009)

    Google Scholar 

  15. Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dorfel, M.R., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local \(h\)-refinement using T-splines. Comput. Methods Appl. Mech. Eng. 199, 264–275 (2010)

    Article  Google Scholar 

  17. Elguedj, T., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elements. Comput. Methods Appl. Mech. Eng. 197, 2732–2762 (2008)

    Article  MATH  Google Scholar 

  18. Embar, A., Dolbow, J., Harari, I.: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int. J. Numer. Methods Eng. 83, 877–898 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Epschteyn, Y., Rivière, B.: Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J. Comput. Appl. Math. 206, 843–872 (2007)

    Article  MathSciNet  Google Scholar 

  20. Escobar, J.F.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37, 687–698 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Evans, J.A., Bazilevs, Y., Babuška, I., Hughes, T.J.R.: \(n\)-widths, sup-infs, and optimality ratios for the \(k\)-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng. 198, 1726–1741 (2009)

    Article  MATH  Google Scholar 

  22. Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197, 4333–4352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harari, I., Hughes, T.J.R.: What are \(C\) and \(h\)? Inequalities for the analysis and design of finite element methods. Comput. Methods Appl. Mech. Eng. 97, 157–192 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kiendl, J., Bletzinger, K.-U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198, 3902–3914 (2009)

    Article  MATH  Google Scholar 

  26. Lang, S.: Fundamentals of Differential Geometry. Springer-Verlag, Berlin (1999)

    Book  MATH  Google Scholar 

  27. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case II. Revista Matemática. Iberoamericana 1, 45–121 (1985)

    Article  MATH  Google Scholar 

  28. Lipton, S., Evans, J.A., Bazilevs, Y., Elguedj, T., Hughes, T.J.R.: Robustness of isogeometric structural discretizations under severe mesh distortion. Comput. Methods Appl. Mech. Eng. 199, 357–373 (2010)

    Article  MATH  Google Scholar 

  29. Nitsche, J.A.: Über ein Variationspringzip zur Lösung von Dirichlet-Problemem bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universit at Hamburg 36, 9–15 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Piegl, L., Tiller, W.: The NURBS Book. Springer-Verlag, Berlin (1997)

    Book  Google Scholar 

  31. Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205, 401–407 (2005)

    Article  MATH  Google Scholar 

  32. Vesser, A., Verfürth, R.: Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal. 47, 2387–2405 (2009)

    Article  MathSciNet  Google Scholar 

  33. Warburton, T., Hesthaven, J.S.: On the constants in \(hp\)-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192, 2765–2773 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wheeler, M.F.: An elliptic collocation-finite element method with -interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

J.A. Evans and T.J.R. Hughes were partially supported by the Office of Naval Research under Contract No. N00014-08-0992. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Evans.

Appendix A: An alternate Hölder inequality

Appendix A: An alternate Hölder inequality

Lemma A.1

Let \(D \subset \mathbb R ^d\) denote an open domain for \(d\) a positive integer. If \(f \in L^{\infty }(D)\) and \(g \in L^2(D)\), then

$$\begin{aligned} \Vert fg \Vert _{L^2(D)} \le \Vert f \Vert _{L^{\infty }(D)} \Vert g \Vert _{L^2(D)}. \end{aligned}$$
(86)

Proof

Let \(f \in L^{\infty }(D)\) and \(g \in L^2(D)\). By construction,

$$\begin{aligned} \Vert fg \Vert _{L^2(D)} = \Vert f^2g^2 \Vert ^{1/2}_{L^1(D)}. \end{aligned}$$

By the classical Hölder Inequality,

$$\begin{aligned} \Vert fg \Vert _{L^2(D)}&\le (\Vert f^2 \Vert _{L^{\infty }(D)} \Vert g^2 \Vert _{L^1(D)})^{1/2} \nonumber \\&= (\Vert f \Vert ^2_{L^{\infty }(D)} \Vert g \Vert ^2_{L^2(D)})^{1/2} \nonumber \\&= \Vert f \Vert _{L^{\infty }(D)} \Vert g \Vert _{L^2(D)}. \end{aligned}$$
(87)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J.A., Hughes, T.J.R. Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements. Numer. Math. 123, 259–290 (2013). https://doi.org/10.1007/s00211-012-0484-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0484-6

Mathematics Subject Classification

Navigation