Skip to main content
Log in

Acceleration of convergence of general linear sequences by the Shanks transformation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The Shanks transformation is a powerful nonlinear extrapolation method that is used to accelerate the convergence of slowly converging, and even diverging, sequences {A n }. It generates a two-dimensional array of approximations \({A^{(j)}_n}\) to the limit or anti-limit of {A n } defined as solutions of the linear systems

$$A_l=A^{(j)}_n +\sum^{n}_{k=1}\bar{\beta}_k(\Delta A_{l+k-1}),\ \ j\leq l\leq j+n,$$

where \({\bar{\beta}_{k}}\) are additional unknowns. In this work, we study the convergence and stability properties of \({A^{(j)}_n}\) , as j → ∞ with n fixed, derived from general linear sequences {A n }, where \({{A_n \sim A+\sum^{m}_{k=1}\zeta_k^n\sum^\infty_{i=0} \beta_{ki}n^{\gamma_k-i}}}\) as n → ∞, where ζ k  ≠ 1 are distinct and |ζ 1| = ... = |ζ m | = θ, and γ k  ≠ 0, 1, 2, . . .. Here A is the limit or the anti-limit of {A n }. Such sequences arise, for example, as partial sums of Fourier series of functions that have finite jump discontinuities and/or algebraic branch singularities. We show that definitive results are obtained with those values of n for which the integer programming problems

$$\begin{array}{ll}{\quad\quad\quad\quad\max\limits_{s_1,\ldots,s_m}\sum\limits_{k=1}^{m}\left[(\Re\gamma_k)s_k-s_k(s_k-1)\right],}\\ {{\rm subject\,to}\,\, s_1\geq0,\ldots,s_m\geq0\quad{\rm and}\quad \sum\limits_{k=1}^{m} s_k = n,}\end{array}$$

have unique (integer) solutions for s 1, . . . , s m . A special case of our convergence result concerns the situation in which \({{\Re\gamma_1=\cdots=\Re\gamma_m=\alpha}}\) and n = mν with ν = 1, 2, . . . , for which the integer programming problems above have unique solutions, and it reads \({A^{(j)}_n-A=O(\theta^j\,j^{\alpha-2\nu})}\) as j → ∞. When compared with A j A = O(θ j j α) as j → ∞, this result shows that the Shanks transformation is a true convergence acceleration method for the sequences considered. In addition, we show that it is stable for the case being studied, and we also quantify its stability properties. The results of this work are the first ones pertaining to the Shanks transformation on general linear sequences with m > 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson K.E.: An Introduction to Numerical Analysis. Wiley, New York (1978)

    MATH  Google Scholar 

  2. Baker G.A. Jr.: Essentials of Padé Approximants. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Baker G.A. Jr., Graves-Morris P.R.: Padé Approximants, 2nd edn. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  4. Beckermann B., Matos A.C., Wielonsky F.: Reduction of the Gibbs phenomenon for smooth functions with jumps by the \({\epsilon}\) -algorithm. J. Comput. Appl. Math. 219, 329–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bleistein N., Handelsman R.A.: Asymptotic Expansions of Integrals. Holt, Rinehart and Winston, New York (1975)

    MATH  Google Scholar 

  6. Brezinski C.: Accélération de suites à convergence logarithmique. C. R. Acad. Sci. Paris 273A , 727–730 (1971)

    MathSciNet  Google Scholar 

  7. Brezinski C.: Accélération de la Convergence en Analyse Numérique. In: Lecture Notes in Mathematics, vol. 584. Springer, Berlin (1977)

  8. Brezinski C.: Extrapolation algorithms for filtering series of functions, and treating the Gibbs phenomenon. Numer. Algorithms 36, 309–329 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezinski C., Redivo Zaglia M.: Extrapolation Methods: Theory and Practice. North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  10. de Montessus de Ballore R.: Sur les fractions continue algébriques. Bull. Soc. Math. France 30, 28–36 (1902)

    MathSciNet  MATH  Google Scholar 

  11. Ford W.F., Sidi A.: An algorithm for a generalization of the Richardson extrapolation process. SIAM J. Numer. Anal. 24, 1212–1232 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garibotti C.R., Grinstein F.F.: Recent results relevant to the evaluation of infinite series. J. Comput. Appl. Math. 9, 193–200 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gautschi W.: Orthogonal Poynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2004)

    Google Scholar 

  14. Gilewicz, J.: Approximants de Padé. In: Lecture Notes in Mathematics, vol. 667. Springer, New York (1978)

  15. Gray H.L., Atchison T.A., McWilliams G.V.: Higher order G-transformations. SIAM J. Numer. Anal. 8, 365–381 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guilpin C., Gacougnolle J., Simon Y.: The \({\epsilon}\) -algorithm allows to detect Dirac delta functions. Appl. Numer. Math. 48, 27–40 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hardy G.H.: Divergent Series. Clarendon Press, Oxford (1949)

    MATH  Google Scholar 

  18. Kaminski M., Sidi A.: Solution of an integer programming problem related to convergence of rows of Padé approximants. Appl. Numer. Math. 8, 217–223 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karlsson J., Wallin H.: Rational approximation by an interpolation procedure in several variables. In: Saff, E.B., Varga, R.S. (eds) Padé and Rational Approximation, pp. 83–100. Academic Press, New York (1977)

    Google Scholar 

  20. Levin D.: Development of non-linear transformations for improving convergence of sequences. Int. J. Comput. Math. B 3, 371–388 (1973)

    Article  Google Scholar 

  21. Levin D., Sidi A.: Two new classes of nonlinear transformations for accelerating the convergence of infinite integrals and series. Appl. Math. Comp. 9, 175–215 (1981) Originally appeared as a Tel Aviv University preprint in 1975

    Article  MathSciNet  MATH  Google Scholar 

  22. Lubinsky D.S.: Padé tables of entire functions of very slow and smooth growth. Constr. Approx. 1, 349–358 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubinsky D.S.: Padé tables of entire functions of very slow and smooth growth II. Constr. Approx. 4, 321–339 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ralston A., Rabinowitz P.: A First Course in Numerical Analysis, 2nd edn. McGraw-Hill, New York (1978)

    MATH  Google Scholar 

  25. Rutishauser H.: Der Quotienten-Differenzen-Algorithmus. Z. Angew. Math. Phys. 5, 233–251 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saff E.B.: An extension of Montessus de Ballore theorem on the convergence of interpolating rational functions. J. Approx. Theory 6, 63–67 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shanks D.: Nonlinear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34, 1–42 (1955)

    MathSciNet  MATH  Google Scholar 

  28. Sidi A.: On a generalization of the Richardson extrapolation process. Numer. Math. 57, 365–377 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sidi A.: Quantitative and constructive aspects of the generalized Koenig’s and de Montessus’s theorems for Padé approximants. J. Comput. Appl. Math. 29, 257–291 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sidi A.: Acceleration of convergence of (generalized) Fourier series by the d-transformation. Ann. Numer. Math. 2, 381–406 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Sidi A.: Extension and completion of Wynn’s theory on convergence of columns of the epsilon table. J. Approx. Theory 86, 21–40 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sidi A.: Further results on convergence and stability of a generalization of the Richardson extrapolation process. BIT Numer. Math. 36, 143–157 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sidi A.: The Richardson extrapolation process with a harmonic sequence of collocation points. SIAM J. Numer. Anal. 37, 1729–1746 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sidi, A.: Practical Extrapolation Methods: Theory and Applications. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 10. Cambridge University Press, Cambridge (2003)

  35. Sidi A.: Asymptotic expansions of Legendre series coefficients for functions with endpoint singularities. Asymptot. Anal. 65, 175–190 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Sidi A.: Asymptotic analysis of a generalized Richardson extrapolation process on linear sequences. Math. Comput. 79, 1681–1695 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Sidi A.: A simple approach to asymptotic expansions for Fourier integrals of singular functions. Appl. Math. Comput. 216, 3378–3385 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sidi A.: Survey of numerical stability issues in convergence acceleration. Appl. Numer. Math. 60, 1395–1410 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sidi A.: Asymptotic expansions of Legendre series coefficients for functions with interior and endpoint singularities. Math. Comput. 80, 1663–1684 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sidi A., Ford W.F., Smith D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986) Originally appeared as NASA TP-2193 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. Smith D.A., Ford W.F.: Acceleration of linear and logarithmic convergence. SIAM J. Numer. Anal. 16, 223–240 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  42. Smith D.A., Ford W.F.: Numerical comparisons of nonlinear convergence accelerators. Math. Comput. 38, 481–499 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stoer J., Bulirsch R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2002)

    MATH  Google Scholar 

  44. Wynn P.: On a device for computing the e m (S n ) transformation. Math. Tables Aids Comput. 10, 91–96 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wynn P.: On the convergence and stability of the epsilon algorithm. SIAM J. Numer. Anal. 3, 91–122 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wynn, P.: Transformations to accelerate the convergence of Fourier series. In: Gertrude Blanche Anniversary Volume, pp. 339–379. Wright Patterson Air Force Base (1967)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avram Sidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidi, A. Acceleration of convergence of general linear sequences by the Shanks transformation. Numer. Math. 119, 725–764 (2011). https://doi.org/10.1007/s00211-011-0398-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0398-8

Mathematics Subject Classification (2000)

Navigation