Skip to main content
Log in

Convergence and computation of simultaneous rational quadrature formulas

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We discuss the convergence and numerical evaluation of simultaneous quadrature formulas which are exact for rational functions. The problem consists in integrating a single function with respect to different measures using a common set of quadrature nodes. Given a multi-index n, the nodes of the integration rule are the zeros of the multi-orthogonal Hermite–Padé polynomial with respect to (S, α, n), where S is a collection of measures, and α is a polynomial which modifies the measures in S. The theory is based on the connection between Gauss-type simultaneous quadrature formulas of rational type and multipoint Hermite–Padé approximation. The numerical treatment relies on the technique of modifying the integrand by means of a change of variable when it has real poles close to the integration interval. The output of some tests show the power of this approach in comparison with other ones in use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aptekarev A.I., Kalyagin V., Lopez Lagomasino G. and Rocha I.A. (2006). On the limit behavior of recurrence coefficients for multiple orthogonal polynomials. J. Approx. Theory 139: 346–370

    Article  MATH  MathSciNet  Google Scholar 

  2. Borges C.F. (1999). On a class of Gauss-like quadrature rules. Numer. Math. 67: 271–288

    Article  MathSciNet  Google Scholar 

  3. De la Calle Ysern B. (2005). Error bounds for rational quadrature formulae of analytic functions. Numer. Math. 101: 251–271

    Article  MATH  MathSciNet  Google Scholar 

  4. Fidalgo U. and López Lagomasino G. (2002). On perfect Nikishin systems. Comput. Methods Funct. Theory 2: 415–426

    MATH  MathSciNet  Google Scholar 

  5. Fidalgo U. and López Lagomasino G. (2006). Rate of convergence of generalized Hermite–Padé approximants of Nikishin systems. Constr. Approx. 23(2): 165–196

    Article  MATH  MathSciNet  Google Scholar 

  6. Fidalgo U. and López Lagomasino G. (2007). General results on the convergence of multipoint Hermite–Padé approximants of Nikishin systems. Constr. Approx. 25: 89–107

    Article  MATH  MathSciNet  Google Scholar 

  7. Fidalgo Prieto U., Illán González J.R. and López Lagomasino G. (2004). Hermite–Padé approximation and simultaneous quadrature formulas. J. Approx. Theory 126: 171–197

    Article  MATH  MathSciNet  Google Scholar 

  8. Gautschi W. (1993) Gauss-type quadrature rules for rational functions. In: Brass H., Hämmerlin G. (eds) Numerical integration, IV, vol. 112, of Internat. Ser. Numer. Math. Birkhäuser, Basel, pp. 111–130

  9. Gautschi W. (1999). Algorithm 793: GQRAT-Gauss quadrature for rational functions. ACM Trans. Math. Softw. 25: 213–239

    Article  MATH  MathSciNet  Google Scholar 

  10. Gautschi W. (2001). The use of rational functions in numerical quadrature. J. Comput. Appl. Math. 133: 111–126

    Article  MATH  MathSciNet  Google Scholar 

  11. Gautschi W. (2004). Orthogonal Polynomials. Computation and Approximation, Numerical Mathematics and Scientific Computation. Oxford University Press, New York

    Google Scholar 

  12. Gautschi W., Gori L. and Lo Cascio M.L. (2000). Quadrature rules for rational functions. Numer. Math. 86: 617–633

    Article  MATH  MathSciNet  Google Scholar 

  13. Gonchar A.A. and López Lagomasino G. (1978). On Markov’s theorem for multipoint Padé approximants. Math. USSR Sb. 34: 449–459

    Article  MATH  Google Scholar 

  14. Krein M.G., Nudelman, A.A.: The Markov Moment Problem and Extremal Problems. Transl. of Math. Monographs, vol. 50, Amer. Math. Soc., Providence, R.I. (1977)

  15. Illán González J.R. and López-Lagomasino G. (1982). Quadrature formulas for unbounded intervals. Cienc. Mat. (Havana) 3: 29–47

    MATH  MathSciNet  Google Scholar 

  16. Illán González, J.R., López-Lagomasino, G.: A note on generalized quadrature formulas of Gauss-Jacobi type. Proc. Internat. Conf. Constr. Theory of Functions’ 84, Varna (1984), 513–518

  17. Illán González J.R. and López-Lagomasino G. (1987). Numerical integration based on interpolation and their connection with rational approximation. Cienc. Mat. 8: 31–44

    MATH  Google Scholar 

  18. Kershaw D. (1970). A note on orthogonal polynomials. Proc. Edinb. Math. Soc. 17: 83–93

    Article  MATH  MathSciNet  Google Scholar 

  19. Monegato G. (1986). Quadrature formulas for functions with poles near the interval of integration. Math. Comput. 47: 301–312

    Article  MATH  MathSciNet  Google Scholar 

  20. Monegato G. and Scuderi L. (1999). Numerical integration of functions with boundary singularities. J. Comput. Appl. Math. 112: 201–214

    Article  MATH  MathSciNet  Google Scholar 

  21. Nikishin E.M. (1982). On simultaneous Padé Approximants. Math. USSR Sb. 41: 409–425

    Article  MATH  Google Scholar 

  22. Petrushev P.P. and Popov V.A. (1987). Rational Approximation of real functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  23. Sloan I.H. and Smith W.E. (1982). Properties of interpolatory product integration rules. SIAM J. Numer. Anal. 19: 427–442

    Article  MATH  MathSciNet  Google Scholar 

  24. Van Assche W. and Vanherwegen I. (1993). Quadrature formulas based on rational approximation. Math. Comput. 61: 765–783

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Illán González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prieto, U.F., González, J.R.I. & Lagomasino, G.L. Convergence and computation of simultaneous rational quadrature formulas. Numer. Math. 106, 99–128 (2007). https://doi.org/10.1007/s00211-006-0056-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0056-8

Mathematics Subject Classification (2000)

Navigation