Skip to main content

Advertisement

Log in

Capsaicin reduces blood glucose and prevents prostate growth by regulating androgen, RAGE/IGF-1/Akt, TGF-β/Smad signalling pathway and reversing epithelial-mesenchymal transition in streptozotocin-induced diabetic mice

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is a metabolic disease. Diabetes increases the risk of benign prostatic hyperplasia (BPH). Capsaicin is extracted from chili peppers and possesses many pharmacological properties, including anti-diabetic, pain-relieving, and anti-cancer properties. This study aimed to investigate the effects of capsaicin on glucose metabolism and prostate growth in T2DM mice and uncover the related mechanisms. Mice model of diabetes was established by administering a high-fat diet and streptozotocin. Oral administration of capsaicin for 2 weeks inhibited prostate growth in testosterone propionate (TP)-treated mice. Furthermore, oral administration of capsaicin (5 mg/kg) for 2 weeks decreased fasting blood glucose, prostate weight, and prostate index in diabetic and TP-DM mice. Histopathological alterations were measured using hematoxylin & eosin (H&E) staining. The protein expression of 5α-reductase type II, androgen receptor (AR), and prostate-specific antigen (PSA) were upregulated in diabetic and TP-DM mice, but capsaicin reversed these effects. Capsaicin decreased the protein expression of p-AKT, insulin-like growth factor-1 (IGF-1), IGF-1R, and the receptor for advanced glycation end products (RAGE) in diabetic and TP-DM mice. Capsaicin also regulated epithelial-mesenchymal transition (EMT) and modulated the expression of fibrosis-related proteins, including E-cadherin, N-cadherin, vimentin, fibronectin, α-SMA, TGFBR2, TGF-β1, and p-Smad in TP-DM mice. In this study, capsaicin alleviated diabetic prostate growth by attenuating EMT. Mechanistically, capsaicin affected EMT by regulating RAGE/IGF-1/AKT, AR, and TGF-β/Smad signalling pathways. These results provide with new therapeutic approach for treating T2DM or T2DM-induced prostate growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The current data generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA (2017) Medicinal chemistry, pharmacology, and clinical implications of TRPV1 receptor antagonists. Med Res Rev 37(4):936–983

    Article  PubMed  Google Scholar 

  • Alonso-Magdalena P, Brossner C, Reiner A, Cheng G, Sugiyama N, Warner M, Gustafsson JA (2009) A role for epithelial-mesenchymal transition in the etiology of benign prostatic hyperplasia. Proc Natl Acad Sci U S A 106(8):2859–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assar ME, Angulo J, Rodriguez-Manas L (2016) Diabetes and ageing-induced vascular inflammation. J Physiol 594(8):2125–2146

    Article  PubMed  Google Scholar 

  • Berger AP, Kofler K, Bektic J, Rogatsch H, Steiner H, Bartsch G, Klocker H (2003) Increased growth factor production in a human prostatic stromal cell culture model caused by hypoxia. Prostate 57(1):57–65

    Article  CAS  PubMed  Google Scholar 

  • Berger AP, Deibl M, Halpern EJ, Lechleitner M, Bektic J, Horninger W, Fritsche G, Steiner H, Pelzer A, Bartsch G, Frauscher F (2005) Vascular damage induced by type 2 diabetes mellitus as a risk factor for benign prostatic hyperplasia. Diabetologia 48(4):784–789

    Article  CAS  PubMed  Google Scholar 

  • Braga Ferreira LG, Faria JV, Dos Santos JPS, Faria RX (2020) Capsaicin: TRPV1-independent mechanisms and novel therapeutic possibilities. Eur J Pharmacol 887:173356

    Article  CAS  PubMed  Google Scholar 

  • Breyer BN, Sarma AV (2014) Hyperglycemia and insulin resistance and the risk of BPH/LUTS: an update of recent literature. Curr Urol Rep 15(12):462

    Article  PubMed  PubMed Central  Google Scholar 

  • Calmasini FB, de Oliveira MG, Alexandre EC, Silva FH, Tavares EBG, Andre DM, Zapparoli A, Antunes E (2018) Obesity-induced mouse benign prostatic hyperplasia (BPH) is improved by treatment with resveratrol: implication of oxidative stress, insulin sensitivity and neuronal growth factor. J Nutr Biochem 55:53–58

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Luo J, Bao Y (2021) Effects of Polygonatum sibiricum saponin on hyperglycemia, gut microbiota composition and metabolic profiles in type 2 diabetes mice. Biomed Pharmacother 143:112155

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Miao L, Gao X, Wang G, Xu Y (2015) Effect of obesity and hyperglycemia on benign prostatic hyperplasia in elderly patients with newly diagnosed type 2 diabetes. Int J Clin Exp Med 8(7):11289–11294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xu H, Liu C, Gu M, Zhan M, Chen Q, Wang Z (2021) LncRNA DIO3OS regulated by TGF-beta1 and resveratrol enhances epithelial mesenchymal transition of benign prostatic hyperplasia epithelial cells and proliferation of prostate stromal cells. Transl Androl Urol 10(2):643–653

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng M, Liu H, Zhang D, Liu Y, Wang C, Liu F, Chen J (2015) HMGB1 Enhances the AGE-Induced Expression of CTGF and TGF-beta via RAGE-dependent signaling in renal tubular epithelial cells. Am J Nephrol 41(3):257–266

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Jin SW, Choi CY, Kim HG, Lee GH, Kim YA, Chung YC, Jeong HG (2017) Capsaicin inhibits dimethylnitrosamine-induced hepatic fibrosis by inhibiting the TGF-beta1/Smad pathway via peroxisome proliferator-activated receptor gamma activation. J Agric Food Chem 65(2):317–326

    Article  CAS  PubMed  Google Scholar 

  • Cohen P, Peehl DM, Lamson G, Rosenfeld RG (1991) Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins in primary cultures of prostate epithelial cells. J Clin Endocrinol Metab 73(2):401–407

    Article  CAS  PubMed  Google Scholar 

  • Crescioli C, Villari D, Forti G, Ferruzzi P, Petrone L, Vannelli GB, Adorini L, Salerno R, Serio M, Maggi M (2002) Des (1–3) IGF-I-stimulated growth of human stromal BPH cells is inhibited by a vitamin D3 analogue. Mol Cell Endocrinol 198(1–2):69–75

    Article  CAS  PubMed  Google Scholar 

  • Dalu A, Blaydes BS, Bryant CW, Latendresse JR, Weis CC, Barry Delclos K (2002) Estrogen receptor expression in the prostate of rats treated with dietary genistein. J Chromatogr B Analyt Technol Biomed Life Sci 777(1–2):249–260

    Article  CAS  PubMed  Google Scholar 

  • D’Arpino MC, Fuchs AG, Sanchez SS, Honore SM (2018) Extracellular matrix remodeling and TGF-beta1/Smad signaling in diabetic colon mucosa. Cell Biol Int 42(4):443–456

    Article  CAS  PubMed  Google Scholar 

  • Denis L, Morton MS, Griffiths K (1999) Diet and its preventive role in prostatic disease. Eur Urol 35(5–6):377–387

    Article  CAS  PubMed  Google Scholar 

  • Duh E, Aiello LP (1999) Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes 48(10):1899–1906

    Article  CAS  PubMed  Google Scholar 

  • El-Shafei NH, Zaafan MA, Kandil EA, Sayed RH (2023) Simvastatin ameliorates testosterone-induced prostatic hyperplasia in rats via modulating IGF-1/PI3K/AKT/FOXO signaling. Eur J Pharmacol 950:175762

    Article  CAS  PubMed  Google Scholar 

  • Espinosa G, Esposito R, Kazzazi A, Djavan B (2013) Vitamin D and benign prostatic hyperplasia – a review. Can J Urol 20(4):6820–6825

    PubMed  Google Scholar 

  • Evans BA, Griffiths K, Morton MS (1995) Inhibition of 5 alpha-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. J Endocrinol 147(2):295–302

    Article  CAS  PubMed  Google Scholar 

  • Filipovski V, Kubelka-Sabit K, Jasar D, Janevska V (2017) Androgen receptor expression in epithelial and stromal cells of prostatic carcinoma and benign prostatic hyperplasia. Open Access Maced J Med Sci 5(5):608–612

    Article  PubMed  PubMed Central  Google Scholar 

  • Fletcher B, Gulanick M, Lamendola C (2002) Risk factors for type 2 diabetes mellitus. J Cardiovasc Nurs 16(2):17–23

    Article  PubMed  Google Scholar 

  • Foo KT (2019) What is a disease? What is the disease clinical benign prostatic hyperplasia (BPH)? World J Urol 37(7):1293–1296

    Article  PubMed  PubMed Central  Google Scholar 

  • Forbes BE, Blyth AJ, Wit JM (2020) Disorders of IGFs and IGF-1R signaling pathways. Mol Cell Endocrinol 518:111035

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Liu J, Liu D, Zhou Y, Guo Y, Wang Z, Yang S, He W, Chen P, Wang X, DiSanto ME, Zhang X (2022) Glucose-regulated protein 78 modulates cell growth, epithelial-mesenchymal transition, and oxidative stress in the hyperplastic prostate. Cell Death Dis 13(1):78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garay-Sevilla ME, Nava LE, Malacara JM, Wrobel K, Wrobel K, Perez U (2000) Advanced glycosylation end products (AGEs), insulin-like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev 16(2):106–113

    Article  CAS  PubMed  Google Scholar 

  • Gennigens C, Menetrier-Caux C, Droz JP (2006) Insulin-like growth factor (IGF) family and prostate cancer. Crit Rev Oncol Hematol 58(2):124–145

    Article  CAS  PubMed  Google Scholar 

  • Gu M, Liu C, Yang T, Zhan M, Cai Z, Chen Y, Chen Q, Wang Z (2021) High-Fat diet induced gut microbiota alterations associating with Ghrelin/Jak2/Stat3 up-regulation to promote benign prostatic hyperplasia development. Front Cell Dev Biol 9:615928

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu S, Yu W, Lv TJ, Chang CS, Li X, Jin J (2014) Evidence of TGF-beta1 mediated epithelial-mesenchymal transition in immortalized benign prostatic hyperplasia cells. Mol Membr Biol 31(2–3):103–110

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Lee C (2003) Regulation of stromal proliferation, growth arrest, differentiation and apoptosis in benign prostatic hyperplasia by TGF-beta. Front Biosci 8:s740-749

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Chen H, Zhou X, Wu X, Hu E, Jiang Z (2017) Inhibition effects of chlorogenic acid on benign prostatic hyperplasia in mice. Eur J Pharmacol 809:191–195

    Article  CAS  PubMed  Google Scholar 

  • Jahan N, Chowdhury A, Li T, Xu K, Wei F, Wang S (2021) Neferine improves oxidative stress and apoptosis in benign prostate hyperplasia via Nrf2-ARE pathway. Redox Rep 26(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen JA, Varewijck AJ (2014) IGF-IR targeted therapy: past, present and future. Front Endocrinol (Lausanne) 5:224

  • Khalid M, Petroianu G, Adem A (2022) Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules 12(4):542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KK, Sheppard D, Chapman HA (2018) TGF-beta1 signaling and tissue fibrosis. Cold Spring Harb Perspect Biol 10(4):a022293

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Jin BR, An HJ (2023) Hesperidin ameliorates benign prostatic hyperplasia by attenuating cell proliferation, inflammatory response, and epithelial-mesenchymal transition via the TGF-beta1/Smad signaling pathway. Biomed Pharmacother 160:114389

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wu CL, Febbo PG, Olumi AF (2007) Stromally expressed c-Jun regulates proliferation of prostate epithelial cells. Am J Pathol 171(4):1189–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Allen JD, Arnold JT, Blackman MR (2008) Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells. Carcinogenesis 29(4):816–823

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Choi RY, Jawad SM, Arnold JT (2011) Androgen-induced PSA expression requires not only activation of AR but also endogenous IGF-I or IGF-I/PI3K/Akt signaling in human prostate cancer epithelial cells. Prostate 71(7):766–777

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Deng J, Fan D (2019) Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway. Food Funct 10(5):2538–2551

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wang W, Li X, Tang S, Meng D, Xia W, Wang H, Wu Y, Zhou X, Zhang J (2022) Capsaicin ameliorates renal fibrosis by inhibiting TGF-beta1-Smad2/3 signaling. Phytomedicine 100:154067

    Article  PubMed  Google Scholar 

  • Liu CM, Shao Z, Chen X, Chen H, Su M, Zhang Z, Wu Z, Zhang P, An L, Jiang Y, Ouyang AJ (2023) Neferine attenuates development of testosterone-induced benign prostatic hyperplasia in mice by regulating androgen and TGF-beta/Smad signaling pathways. Saudi Pharm J 31(7):1219–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund TD, Blake C, Bu L, Hamaker AN, Lephart ED (2011) Equol an isoflavonoid: potential for improved prostate health, in vitro and in vivo evidence. Reprod Biol Endocrinol 9:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz SZ, Hennenlotter J, Scharpf MO, Sailer C, Fritsche L, Schmid V, Kantartzis K, Wagner R, Lehmann R, Berti L, Peter A, Staiger H, Fritsche A, Fend F, Todenhofer T, Stenzl A, Haring HU, Heni M (2018) Androgen receptor overexpression in prostate cancer in type 2 diabetes. Mol Metab 8:158–166

    Article  CAS  PubMed  Google Scholar 

  • Mansor R, Holly J, Barker R, Biernacka K, Zielinska H, Koupparis A, Rowe E, Oxley J, Sewell A, Martin RM, Lane A, Hackshaw-McGeagh L, Perks C (2020) IGF-1 and hyperglycaemia-induced FOXA1 and IGFBP-2 affect epithelial to mesenchymal transition in prostate epithelial cells. Oncotarget 11(26):2543–2559

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao L, Yun X, Yang X, Jia S, Jiao C, Shao R, Hao J, Chang Y, Fan G, Zhang J, Geng Q, Wichai N, Gao X (2021) An inhibitory effect of Berberine from herbal Coptis chinensis Franch on rat detrusor contraction in benign prostatic hyperplasia associated with lower urinary tract symptoms. J Ethnopharmacol 268:113666

    Article  CAS  PubMed  Google Scholar 

  • Miernik A, Gratzke C (2020) Current treatment for benign prostatic hyperplasia. Dtsch Arztebl Int 117(49):843–854

    PubMed  PubMed Central  Google Scholar 

  • Mohany M, Ahmed MM, Al-Rejaie SS (2022) The Role of NF-kappaB and Bax/Bcl-2/Caspase-3 signaling pathways in the protective effects of Sacubitril/Valsartan (Entresto) against HFD/STZ-induced diabetic kidney disease. Biomedicines 10(11):2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nugroho EA, Kurniawan R (2017) Association between hyperglycemia and prostate volume in patients with benign prostate enlargement: A hospital case-control study. J Biomed Transl Res 02:46–49

    Article  Google Scholar 

  • Orio F Jr, Terouanne B, Georget V, Lumbroso S, Avances C, Siatka C, Sultan C (2002) Potential action of IGF-1 and EGF on androgen receptor nuclear transfer and transactivation in normal and cancer human prostate cell lines. Mol Cell Endocrinol 198(1–2):105–114

    Article  CAS  PubMed  Google Scholar 

  • Peng YC, Joyner AL (2015) Hedgehog signaling in prostate epithelial-mesenchymal growth regulation. Dev Biol 400(1):94–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Q, He W, Liu D, Yin J, Ye L, Chen P, Xu D, Liu J, Li Y, Zeng G, Li M, Wu Z, Zhang Y, Wang X, DiSanto ME, Zhang X (2021) M2a macrophage can rescue proliferation and gene expression of benign prostate hyperplasia epithelial and stroma cells from insulin-like growth factor 1 knockdown. Prostate 81(9):530–542

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Huang Z, Meng X, Zhang X, Dong L, Zhao X (2014) Prostate volume correlates with diabetes in elderly benign prostatic hyperplasia patients. Int Urol Nephrol 46(3):499–504

    Article  PubMed  Google Scholar 

  • Roehrborn CG, Schwinn DA (2004) Alpha1-adrenergic receptors and their inhibitors in lower urinary tract symptoms and benign prostatic hyperplasia. J Urol 171(3):1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan C, Kalaivani K (2020) Isopulegol mitigates hyperglycemia mediated oxidative and endoplasmic reticulum stress in HFD/STZ induced diabetic rats. Arch Med Res 51(3):204–214

    Article  CAS  PubMed  Google Scholar 

  • Sekeroglu V, Aydin B, Atli Sekeroglu Z, Ozdener Kompe Y (2018) Hepatoprotective effects of capsaicin and alpha-tocopherol on mitochondrial function in mice fed a high-fat diet. Biomed Pharmacother 98:821–825

    Article  CAS  PubMed  Google Scholar 

  • Shabani E, Kalantari H, Kalantar M, Goudarzi M, Mansouri E, Kalantar H (2021) Berberine ameliorates testosterone-induced benign prostate hyperplasia in rats. BMC Complement Med Ther 21(1):301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Z, Chen C-Y, Chen X, Chen H, Su M, Sun H, Li Y, Tu B, Wang Z, Liu C-M (2023) Capsaicin exerts anti-benign prostatic hyperplasia effects via inhibiting androgen receptor signaling pathway. Biocell 47:1389–1396

    Article  CAS  Google Scholar 

  • Sharma SK, Vij AS, Sharma M (2013) Mechanisms and clinical uses of capsaicin. Eur J Pharmacol 720(1–3):55–62

    Article  CAS  PubMed  Google Scholar 

  • Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, Yu CL (2020) The development of maillard reaction, and advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with AGE-related diseases. Molecules 25(23):5591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slabakova E, Pernicova Z, Slavickova E, Starsichova A, Kozubik A, Soucek K (2011) TGF-beta1-induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of SNAI2/Slug. Prostate 71(12):1332–1343

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan K (2016) Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: a review. Crit Rev Food Sci Nutr 56(9):1488–1500

    Article  CAS  PubMed  Google Scholar 

  • Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA, Ouatu A, Floria M (2020) The intricate relationship between Type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD). J Diabetes Res 2020:3920196

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong S, Mo M, Hu X, Wu L, Chen M, Zhao C (2023) MIR663AHG as a competitive endogenous RNA regulating TGF-beta-induced epithelial proliferation and epithelial-mesenchymal transition in benign prostate hyperplasia. J Biochem Mol Toxicol 37(9):e23391

    Article  CAS  PubMed  Google Scholar 

  • Vikram A, Jena G, Ramarao P (2010a) Insulin-resistance and benign prostatic hyperplasia: the connection. Eur J Pharmacol 641(2–3):75–81

    Article  CAS  PubMed  Google Scholar 

  • Vikram A, Jena GB, Ramarao P (2010b) Increased cell proliferation and contractility of prostate in insulin resistant rats: linking hyperinsulinemia with benign prostate hyperplasia. Prostate 70(1):79–89

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Fu YY, Kang DY (2016) The Association Between Metabolic Syndrome and Characteristics of Benign Prostatic Hyperplasia: A Systematic Review and Meta-Analysis. Medicine (Baltimore) 95(19):e3243

  • Wang K, Jin S, Fan D, Wang M, Xing N, Niu Y (2017) Anti-proliferative activities of finasteride in benign prostate epithelial cells require stromal fibroblasts and c-Jun gene. PLoS One 12(2):e0172233

  • Welen K, Damber JE (2022) Androgens, aging, and prostate health. Rev Endocr Metab Disord 23(6):1221–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Liang Y, Kong Y, Zhang F, Feng Y, Ouyang Y, Wang C, Guo Z, Xiao J, Feng N (2022) Role of glycated proteins in vivo: Enzymatic glycated proteins and non-enzymatic glycated proteins. Food Res Int 155:111099

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Chen P, Xiao H, Wang X, DiSanto ME, Zhang X (2019) Upregulated interleukin 21 receptor enhances proliferation and epithelial-mesenchymal transition process in benign prostatic hyperplasia. Front Endocrinol (Lausanne) 10:4

  • Yang BY, Jiang CY, Dai CY, Zhao RZ, Wang XJ, Zhu YP, Qian YX, Yin FL, Fu XY, Jing YF, Han BM, Xia SJ, Ruan Y (2019) 5-ARI induces autophagy of prostate epithelial cells through suppressing IGF-1 expression in prostate fibroblasts. Cell Prolif 52(3):e12590

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu S, Zhang C, Lin CC, Niu Y, Lai KP, Chang HC, Yeh SD, Chang C, Yeh S (2011) Altered prostate epithelial development and IGF-1 signal in mice lacking the androgen receptor in stromal smooth muscle cells. Prostate 71(5):517–524

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Ma X, Zhang L, Sun H, Liu X (2017a) Capsaicin reduces blood glucose by increasing insulin levels and glycogen content better than capsiate in streptozotocin-induced diabetic rats. J Agric Food Chem 65(11):2323–2330

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Deng J, Liu D, Tuo X, Xiao L, Lai B, Yao Q, Liu J, Yang H, Wang N (2018) Nuciferine ameliorates hepatic steatosis in high-fat diet/streptozocin-induced diabetic mice through a PPARalpha/PPARgamma coactivator-1alpha pathway. Br J Pharmacol 175(22):4218–4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S ,Qin C , Wang Q , Tian J , Liu X (2017b). Effect of capsaicin on glucose metabolism in type 1 diabetes rats. Acta Nutrimenta Sinica 39(1):76–80, 85

Download references

Acknowledgements

The authors would like to express their gratitude to EditSprings. (https://www.editsprings.cn ) for the expert linguistic services provided.

Funding

This work was supported by Yichun University Local Development Research Center (grant no. DF2019002) and PhD Research Foundation of Yichun University (grant no. 2113360118006).

Author information

Authors and Affiliations

Authors

Contributions

Chi-Ming Liu and Hui Sun conceived and designed the experiments. The experiments were performed by Hui Sun, ZiTong Wang, BingHua Tu, ZiChen Shao, Peng Zhang, WeiChang Zhang, YunYan Wu, and XiaoMing Wu. The data were analyzed by Hui Sun, YiDan Li, Di Han, and YinJie Jiang. The manuscript was written by Hui Sun and Chi-Ming Liu. Chi-Ming Liu approved the version to be published and provided funding. All authors read and approved the final version of the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Chi-Ming Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The present study and the animal experiments were approved and conducted according to the guidelines of the Animal Care and Ethics Committee of Yichun University (Approval No. 2023013).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Wang, Z., Tu, B. et al. Capsaicin reduces blood glucose and prevents prostate growth by regulating androgen, RAGE/IGF-1/Akt, TGF-β/Smad signalling pathway and reversing epithelial-mesenchymal transition in streptozotocin-induced diabetic mice. Naunyn-Schmiedeberg's Arch Pharmacol (2024). https://doi.org/10.1007/s00210-024-03092-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-024-03092-w

Keywords

Navigation