Skip to main content
Log in

Molecular functions of microRNAs in colorectal cancer: recent roles in proliferation, angiogenesis, apoptosis, and chemoresistance

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

MiRNAs (microRNAs) constitute a group of diminutive molecules of non-coding RNA intricately involved in regulating gene expression. This regulation is primarily accomplished through the binding of miRNAs to complementary sequences situated in the 3′-UTR of the messenger RNA (mRNA) target; as a result, they are degraded or repressed. The multifaceted biogenesis of miRNAs is characterized by a meticulously orchestrated sequence of events encompassing transcription, processing, transportation, and decay. Colorectal cancer stands as a pervasive and formidable ailment, afflicting millions across the globe. Colorectal cancer is not well diagnosed early, and metastasis rates are high, which results in low survival rates in advanced stages. The genesis and progression of colorectal cancer are subject to the influence of genetic and epigenetic factors, among which miRNAs play a pivotal role. When it comes to colorectal cancer, miRNAs have a dual character, depending on the genes they target, functioning as either tumor suppressors or oncogenes and the prevailing cellular milieu. Their impact extends to modulating critical facets of colorectal cancer pathogenesis, including proliferation, angiogenesis, apoptosis, chemoresistance, and radiotherapy response. The discernible potential of miRNAs which are used as biomarkers to diagnose colorectal cancer, prognosis, and treatment response has come to the forefront. Notably, miRNAs are easily found and detected readily in a variety of biological fluids, including saliva, blood, urine, and feces. This prominence is attributed to the inherent advantages of miRNAs over conventional biomarkers, including heightened stability, specificity, sensitivity, and accessibility. Various investigations have pinpointed miRNA signatures or panels capable of differentiating colorectal cancer patients from their healthy counterparts, predicting colorectal cancer stage and survival, and monitoring colorectal cancer recurrence and therapy response. Although there has been research on miRNAs in various diseases, there has been less research on miRNAs in cancer. Moreover, updated results of preclinical and clinical studies on miRNA biomarkers and drugs are required. Nevertheless, the integration of miRNAs as biomarkers for colorectal cancer is not devoid of challenges and limitations. These encompass the heterogeneity prevalent among colorectal cancer subtypes and stages, the variability in miRNA expression across different tissues and individuals, the absence of standardized methodologies for miRNA detection and quantification, and the imperative for validation through extensive clinical trials. Consequently, further research is imperative to conclusively establish the clinical utility and reliability of miRNAs as colorectal cancer biomarkers. MiR-21 demonstrates carcinogenic characteristics by targeting several tumor suppressor genes, which encourages cell division, invasion, and metastasis. On the other hand, by controlling the Wnt/β-catenin pathway, the tumor suppressor miRNA miR-34a prevents CRC cell proliferation, migration, and invasion. Furthermore, in colorectal cancer, the miR-200 family increases chemotherapy sensitivity while suppressing epithelial-mesenchymal transition (EMT). As an oncogene, the miR-17–92 cluster targets elements of the TGF-β signaling pathway to encourage the growth of CRC cells. Finally, miR-143/145, which is downregulated in CRC, influences apoptosis and the progression of the cell cycle. These miRNAs affect pathways like Wnt, TGF-β, PI3K-AKT, MAPK, and EMT, making them potential clinical biomarkers and therapeutic targets. This review summarizes recent research related to miRNAs, their role in tumor progression and metastasis, and their potential as biomarkers and therapeutic targets in colorectal cancer. In addition, we combined miRNAs’ roles in tumorigenesis and development with the therapy of CRC patients, leading to novel perspectives on colorectal cancer diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Akbari A et al (2014) Evaluation of antitumor activity of a TGF-beta receptor I inhibitor (SD-208) on human colon adenocarcinoma. DARU J Pharm Sci 22:1–7

    Article  Google Scholar 

  • Akbari A et al (2016) Modulation of transforming growth factor-β signaling transducers in colon adenocarcinoma cells induced by staphylococcal enterotoxin B. Mol Med Rep 13(1):909–914

    Article  CAS  PubMed  Google Scholar 

  • Ali HM, Ellakwa DE, Elaraby NM, Zaher AM, Amr KS (2023) Study the association of microRNA polymorphisms (miR-146a, miR-4513) with the risk of coronary heart diseases in Egyptian population. J Biochem Mol Toxicol 37(3):e23284

    Article  CAS  PubMed  Google Scholar 

  • Amirkhah R et al (2015) MicroRNA–mRNA interactions in colorectal cancerand their role in tumor progression. Genes Chromosomes Cancer 54(3):129–141

    Article  CAS  PubMed  Google Scholar 

  • An X, Sarmiento C, Tan T, Zhu H (2017) Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 7(1):38–51

    Article  PubMed  Google Scholar 

  • Araghi M et al (2019) Changes in colorectal cancerincidence in seven high-income countries: a population-based study. Lancet Gastroenterol Hepatol 4(7):511–518

    Article  PubMed  Google Scholar 

  • Bach DH, Hong JY, Park HJ, Lee SK (2017) The role of exosomes and miRNAs in drug-resistance of cancer cells. Int J Cancer 141(2):220–230

    Article  CAS  PubMed  Google Scholar 

  • Balacescu O, Sur D, Cainap C, Visan S, Cruceriu D, Manzat-Saplacan R, Muresan MS, Balacescu L, Lisencu C, Irimie A (2018) The impact of miRNA in colorectal cancer progression and its liver metastases. Int J Mol Sci 19(12):3711

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2018) Metazoan micrornas. Cell 173(1):20–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedix F et al (2010) Comparison of 17,641 patients with right-and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum 53(1):57–64

    Article  PubMed  Google Scholar 

  • Bjørnetrø T et al (2019) An experimental strategy unveiling exosomal microRNAs 486–5p, 181a–5p and 30d–5p from hypoxic tumour cells as circulating indicators of high-risk rectal cancer. J Extracell Vesicles 8(1):1567219

    Article  PubMed  PubMed Central  Google Scholar 

  • Brody H (2015) Colorectal cancer. Nature 521:S1. https://doi.org/10.1038/521S1a

    Article  CAS  PubMed  Google Scholar 

  • Brown LJ, Roeger SL, Reed RL (2019) Patient perspectives on colorectal cancerscreening and the role of general practice. BMC Fam Pract 20(1):1–9

    Article  CAS  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  PubMed  Google Scholar 

  • Che J et al (2019) miR-20a inhibits hypoxia-induced autophagy by targeting ATG5/FIP200 in colorectal cancer. Mol Carcinog 58(7):1234–1247

    Article  CAS  PubMed  Google Scholar 

  • Chen L-L, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen B et al (2019) Emerging microRNA biomarkers for colorectal cancerdiagnosis and prognosis. R Soc Open Biol 9(1):180212

    Article  CAS  Google Scholar 

  • Chen LY et al (2020) The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancerby miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation. Mol Cancer 19(1):164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C-C et al (2020) STAT3 mediated miR-30a-5p inhibition enhances proliferation and inhibits apoptosis in colorectal cancer cells. Int J Mol Sci 21(19):7315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho WC (2010) MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol 42(8):1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Chu CA et al (2019) MiR-338-5p promotes metastasis of colorectal cancerby inhibition of phosphatidylinositol 3-kinase, catalytic subunit type 3-mediated autophagy pathway. EBioMedicine 43:270–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai X, Xie Y, Dong M (2022) Cancer-associated fibroblasts derived extracellular vesicles promote angiogenesis of colorectal adenocarcinoma cells through miR-135b-5p/FOXO1 axis. Cancer Biol Ther 23(1):76–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desmond BJ, Dennett ER, Danielson KM (2019) Circulating extracellular vesicle microRNA as diagnostic biomarkers in early colorectal cancer—a review. Cancers 12(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding J et al (2018) MiR-223 promotes the doxorubicin resistance of colorectal cancercells via regulating epithelial–mesenchymal transition by targeting FBXW7. Acta Biochim Biophys Sin 50(6):597–604

    Article  CAS  PubMed  Google Scholar 

  • Doghish AS et al (2021) Circulating miR-148a-5p and miR-21-5p as novel diagnostic biomarkers in adult Egyptian male patients with metabolic syndrome. Can J Diabetes 45(7):614–618

    Article  PubMed  Google Scholar 

  • Doghish AS et al (2022) A review of the biological role of miRNAs in prostate cancer suppression and progression. Int J Biol Macromol 197:141–156

    Article  CAS  PubMed  Google Scholar 

  • Dou R et al (2021) EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer. Clin Transl Med 11(12):e595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou R et al (2021) EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer. Clin Transl Med 11(12):e595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan L, Yang W, Feng W, Cao L, Wang X, Niu L, Li Y, Zhou W, Zhang Y, Liu J, Zhang H (2020) Molecular mechanisms and clinical implications of miRNAs in drug resistance of colorectal cancer. Ther Adv Med Oncol 12:1758835920947342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Mahdy HA et al (2020) Diltiazem potentiates the cytotoxicity of gemcitabine and 5-fluorouracil in PANC-1 human pancreatic cancer cells through inhibition of P-glycoprotein. Life Sci 262:118518

    Article  CAS  PubMed  Google Scholar 

  • Elrebehy MA et al (2022) miRNAs as cornerstones in colorectal cancerpathogenesis and resistance to therapy: a spotlight on signaling pathways interplay—a review. Int J Biol Macromol 214:583–600

    Article  CAS  PubMed  Google Scholar 

  • Elshimy R et al (2017) MiR-133a and MiR-155 as potential minimally invasive biomarkers in breast cancer. Cancer Biol 7(1):96–105

    Google Scholar 

  • Eslamizadeh S et al (2018) The role of microRNA signature as diagnostic biomarkers in different clinical stages of colorectal cancer. Cell J (Yakhteh) 20(2):220

    Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    Article  CAS  PubMed  Google Scholar 

  • Fadakar P et al (2016) Evaluation of SD-208, a TGF-Î2-RI kinase inhibitor, as an anticancer agent in retinoblastoma. Acta Med Iran 54(6):352–358

    PubMed  Google Scholar 

  • Fearnhead NS, Wilding JL, Winney B, Tonks S, Bartlett S, Bicknell DC, Tomlinson IP, Mortensen NJM, Bodmer WF (2004) Multiple rare variants in different genes account for multifactorial inherited susceptibility to colorectal adenomas. Proc Natl Acad Sci 101(45):15992–15997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fidler MM et al (2017) Assessing global transitions in human development and colorectal cancerincidence. Int J Cancer 140(12):2709–2715

    Article  CAS  PubMed  Google Scholar 

  • Flatmark K, Høye E, Fromm B (2016) microRNAs as cancer biomarkers. Scand J Clin Lab Invest 76(sup245):S80–S83

    Article  CAS  Google Scholar 

  • Guo Y et al (2021) Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis. Mol Cancer 20(1):93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • He Q et al (2021) Cancer-secreted exosomal miR-21–5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis 12(6):576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JL et al (2018) Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis 7(2):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Tóth KF, Aravin AA (2017) piRNA Biogenesis in Drosophila melanogaster. Trends Genet 33(11):882–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C et al (2019) MicroRNA-17 promotes cell proliferation and migration in human colorectal cancerby downregulating SIK1. Cancer Manag Res 11:3521–3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R (2021) Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 501:66–82

    Article  CAS  PubMed  Google Scholar 

  • Ismail A et al (2020) Hydroxycitric acid potentiates the cytotoxic effect of tamoxifen in MCF-7 breast cancer cells through inhibition of ATP citrate lyase. Steroids 160:108656

    Article  CAS  PubMed  Google Scholar 

  • Jahangiri A et al (2021) Synergistic effect of two antimicrobial peptides, Nisin and P10 with conventional antibiotics against extensively drug-resistant Acinetobacter baumannii and colistin-resistant Pseudomonas aeruginosa isolates. Microb Pathog 150:104700

    Article  CAS  PubMed  Google Scholar 

  • Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6(6):590–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin LH et al (2003) Detection of point mutations of the Axin1 gene in colorectal cancers. Int J Cancer 107(5):696–699

    Article  CAS  PubMed  Google Scholar 

  • Jin Y et al (2018) Overcoming stemness and chemoresistance in colorectal cancerthrough miR-195-5p-modulated inhibition of notch signaling. Int J Biol Macromol 117:445–453

    Article  CAS  PubMed  Google Scholar 

  • Kaminski MF et al (2020) Optimizing the quality of colorectal cancerscreening worldwide. Gastroenterology 158(2):404–417

    Article  PubMed  Google Scholar 

  • Kasprzak A (2023) Prognostic biomarkers of cell proliferation in colorectal cancer(CRC): from immunohistochemistry to molecular biology techniques. Cancers (Basel) 15(18):4570. https://doi.org/10.3390/cancers15184570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsushima K et al (2016) Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun 7(1):13616

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan AQ et al (2019) Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells 8(8):840

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ et al (2016) Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev 104:61–77

    Article  CAS  PubMed  Google Scholar 

  • Kim K et al (2018) Ursolic acid induces apoptosis in colorectal cancercells partially via upregulation of MicroRNA-4500 and inhibition of JAK2/STAT3 phosphorylation. Int J Mol Sci 20(1):114

    Article  PubMed  PubMed Central  Google Scholar 

  • Koralewska N et al (2019) Human ribonuclease Dicer–structure and functions. Postepy Biochem 65(3):173–182

    Article  CAS  PubMed  Google Scholar 

  • Korpal M et al (2011) Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17(9):1101–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar VS, Anjali K (2022) Tumour generated exosomal miRNAs: a major player in tumour angiogenesis. Biochimica et Biophysica Acta (BBA) - Mol Basis Dis 1868(6):166383

    Article  CAS  Google Scholar 

  • Leitão AL, Enguita FJ (2022) A structural view of miRNA biogenesis and function. Non-Coding RNA 8(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17(9):528–542

    Article  CAS  PubMed  Google Scholar 

  • Li VS et al (2012) Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 149(6):1245–1256

    Article  CAS  PubMed  Google Scholar 

  • Li XW, Qiu SJ, Zhang X (2018) Overexpression of miR-215-3p sensitizes colorectal cancer to 5-fluorouracil induced apoptosis through regulating CXCR1. Eur Rev Med Pharmacol Sci 22(21)

  • Li K et al (2021) miR-378a-5p inhibits the proliferation of colorectal cancercells by downregulating CDK1. World J Surg Oncol 19(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X-W et al (2018) Overexpression of miR-215–3p sensitizes colorectal cancerto 5-fluorouracil induced apoptosis through regulating CXCR1. 22(21)

  • Liang H et al (2019) MiR-32-5p regulates radiosensitization, migration and invasion of colorectal cancercells by targeting TOB1 gene. Onco Targets Ther 12:9651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao D et al (2018) miR-221 inhibits autophagy and targets TP53INP1 in colorectal cancercells. Exp Ther Med 15(2):1712–1717

    CAS  PubMed  Google Scholar 

  • Liao F et al (2020) RWR-algorithm-based dissection of microRNA-506-3p and microRNA-140-5p as radiosensitive biomarkers in colorectal cancer. Aging (Albany NY) 12(20):20512

    Article  CAS  PubMed  Google Scholar 

  • Liu C et al (2016) Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget 7(46):76250

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J et al (2020) MicroRNAs that regulate PTEN as potential biomarkers in colorectal cancer: a systematic review. J Cancer Res Clin Oncol 146:809–820

    Article  CAS  PubMed  Google Scholar 

  • Ma J et al (2014) Krüppel-like factor 4 regulates blood-tumor barrier permeability via ZO-1, occludin and claudin-5. J Cell Physiol 229(7):916–926

    Article  CAS  PubMed  Google Scholar 

  • Mahjoor M, Afkhami H, Najafi M, Nasr A, Khorrami S (2023) The role of microRNA-30c in targeting interleukin 6, as an inflammatory cytokine, in the mesenchymal stem cell: a therapeutic approach in colorectal cancer. J Cancer Res Clin Oncol 149(7):3149–3160

    Article  CAS  PubMed  Google Scholar 

  • Mansilla S, Llovera L, Portugal J (2012) Chemotherapeutic targeting of cell death pathways. Chemother Target Cell Death Pathw 12(3):226–238

    CAS  Google Scholar 

  • Meguid RA et al (2008) Is there a difference in survival between right-versus left-sided colon cancers? Ann Surg Oncol 15:2388–2394

    Article  PubMed  PubMed Central  Google Scholar 

  • Mingozzi F et al (2007) CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat Med 13(4):419–422

    Article  CAS  PubMed  Google Scholar 

  • Mirzaee M et al (2021) Long-lasting stable expression of human LL-37 antimicrobial peptide in transgenic barley plants. Antibiotics 10(8):898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi A, Mansoori B, Baradaran B (2016) The role of microRNAs in colorectal cancer. Biomed Pharmacother 84:705–713

    Article  CAS  PubMed  Google Scholar 

  • Mohebi M, Akbari A, Babaei N, Sadeghi A, Heidari M (2016) Identification of a de novo 3bp deletion in CRYBA1/A3 gene in autosomal dominant congenital cataract. Acta Medica Iranica 778–783

  • Murphy N et al (2019) Lifestyle and dietary environmental factors in colorectal cancersusceptibility. Mol Aspects Med 69:2–9

    Article  PubMed  Google Scholar 

  • Nam DY, Rhee JK (2024) Identifying microRNAs associated with tumor immunotherapy response using an interpretable machine learning model. Sci Rep 14:6172. https://doi.org/10.1038/s41598-024-56843-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Osei GY, Adu-Amankwaah J, Koomson S, Beletaa S, Asiamah EA, Smith-Togobo C, Razak SRA (2023) MicroRNAs and colorectal cancer: clinical potential and regulatory networks. Mol Biol Rep 50(11):9575–9585. https://doi.org/10.1007/s11033-023-08810-w

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282

    Article  CAS  PubMed  Google Scholar 

  • Pecot CV et al (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4(1):2427

    Article  PubMed  Google Scholar 

  • Pidíkova P, Reis R, Herichova I (2020) miRNA clusters with down-regulated expression in human colorectal cancerand their regulation. Carcinogenesis 21(13):4633

    Google Scholar 

  • Prossomariti A et al (2020) Are Wnt/β-catenin and PI3K/AKT/mTORC1 distinct pathways in colorectal cancer? Cell Mol Gastroenterol Hepatol 10(3):491–506

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabeneck L, Chiu H, Senore C (2020) International perspective on the burden of colorectal cancerand public health effects. Gastroenterology (Internet) 158(2):447–452

    Article  Google Scholar 

  • Rahmani F, Avan A, Hashemy SI, Hassanian SM (2018) Role of Wnt/β-catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol 233(2):811–817

    Article  CAS  PubMed  Google Scholar 

  • Rong Z et al (2021) The novel circSLC6A6/miR-1265/C2CD4A axis promotes colorectal cancergrowth by suppressing p53 signaling pathway. J Exp Clin Cancer Res 40(1):324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito-Diaz K et al (2018) APC inhibits ligand-independent Wnt signaling by the clathrin endocytic pathway. Dev Cell 44(5):566-581. e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakatani A, Sonohara F, Goel A (2019) Melatonin-mediated downregulation of thymidylate synthase as a novel mechanism for overcoming 5-fluorouracil associated chemoresistance in colorectal cancercells. Carcinogenesis 40(3):422–431

    Article  CAS  PubMed  Google Scholar 

  • Salem H, Ellakwa DE, Fouad H, Hamid MA (2019) APOA1 AND APOA2 proteins as prognostic markers for early detection of urinary bladder cancer. Gene Reports 16:100463

    Article  Google Scholar 

  • Samadi P et al (2019) Let-7e enhances the radiosensitivity of colorectal cancercells by directly targeting insulin-like growth factor 1 receptor. J Cell Physiol 234(7):10718–10725

    Article  CAS  PubMed  Google Scholar 

  • Santos DAR, Gaiteiro C, Santos M, Santos L, Dinis-Ribeiro M, Lima L (2023) MicroRNA biomarkers as promising tools for early colorectal cancerscreening-a comprehensive review. Int J Mol Sci 24(13):11023. https://doi.org/10.3390/ijms241311023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schetter AJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299(4):425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schliemann D et al (2020) Implementation of colorectal cancerscreening interventions in low-income and middle-income countries: a scoping review protocol. BMJ Open 10(6):e037520

    Article  PubMed  PubMed Central  Google Scholar 

  • Sendi H et al (2022) Nanoparticle delivery of miR-122 inhibits colorectal cancerliver metastasis. Cancer Res 82(1):105–113

    Article  CAS  PubMed  Google Scholar 

  • Shang A et al (2020) Exosomal miR-183-5p promotes angiogenesis in colorectal cancerby regulation of FOXO1. Aging (Albany NY) 12(9):8352–8371

    Article  CAS  PubMed  Google Scholar 

  • Shi L-P et al (2018) MicroRNA-149 sensitizes colorectal cancerto radiotherapy by downregulating human epididymis protein 4. Am J Cancer Res 8(1):30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stødkilde-Jørgensen H et al (2020) Pilot study experiences with hyperpolarized [1-13 C] pyruvate MRI in pancreatic cancer patients. J Magn Reson Imaging 51(3):961–963

    Article  PubMed  Google Scholar 

  • Sun W et al (2020) The c-Myc/miR-27b-3p/ATG10 regulatory axis regulates chemoresistance in colorectal cancer. Theranostics 10(5):1981–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sur D, Advani S, Braithwaite D (2022) MicroRNA panels as diagnostic biomarkers for colorectal cancer: a systematic review and meta-analysis. Front Med 9:915226

    Article  Google Scholar 

  • Tang C et al (2022) Improving the prediction for the response to radiotherapy of clinical tumor samples by using combinatorial model of MicroRNA expression. Front Genet 13:1069112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toden S, Zumwalt TJ, Goel A (2021) Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta (BBA)-Rev Cancer 1875(1):188491

    Article  CAS  Google Scholar 

  • Toiyama Y et al (2014) Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg 259(4):735

    Article  PubMed  Google Scholar 

  • Wang C, Chen J (2019) microRNAs as therapeutic targets in intestinal diseases. ExRNA 1(1):1–12

    Article  Google Scholar 

  • Wang Y et al (2016) Identification of molecular targets for predicting colon adenocarcinoma. Med Sci Monit 22:460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2019) Overexpression of microRNA-216a inhibits autophagy by targeting regulated MAP1S in colorectal cancer. Onco Targets Ther 12:4621–4629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q et al (2020) Antibacterial action of peptide F1 against colistin resistance E. coli SHP45 (mcr-1). Food Funct 11(11):10231–10241

    Article  CAS  PubMed  Google Scholar 

  • Wang D et al (2020) Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancerby enhancing M2 polarization of macrophages. Cancer Lett 474:36–52

    Article  CAS  PubMed  Google Scholar 

  • Wang P et al (2021) Circ_0067835 knockdown enhances the radiosensitivity of colorectal cancerby miR-296–5p/IGF1R axis. Oncotargets Ther 14:491–502

    Article  CAS  Google Scholar 

  • Weiss JM et al (2011) Mortality by stage for right-versus left-sided colon cancer: analysis of surveillance, epidemiology, and end results–Medicare data. J Clin Oncol 29(33):4401

    Article  PubMed  PubMed Central  Google Scholar 

  • Xi Y, Xu P (2021) Global colorectal cancerburden in 2020 and projections to 2040. Transl Oncol 14(10):101174

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie N et al (2021) MicroRNA-142-3p suppresses cell proliferation, invasion and epithelial-to-mesenchymal transition via RAC1-ERK1/2 signaling in colorectal cancer. Mol Med Rep 24(2):1–12

    Article  Google Scholar 

  • Xu J et al (2020) MIR22HG acts as a tumor suppressor via TGFβ/SMAD signaling and facilitates immunotherapy in colorectal cancer. Mol Cancer 19:1–15

    Article  Google Scholar 

  • Xu P et al (2021) Intestinal sulfation is essential to protect against colitis and colonic carcinogenesis. Gastroenterology 161(1):271-286. e11

    Article  CAS  PubMed  Google Scholar 

  • Yaghoubi N et al (2021) MicroRNAs as potential investigative and predictive biomarkers in colorectal cancer. Cell Signal 80:109910

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Belaguli N, Berger DH (2009) MicroRNA and colorectal cancer. World J Surg 33:638–646

    Article  PubMed  Google Scholar 

  • Yang Y, Meng WJ, Wang ZQ (2020) MicroRNAs in colon and rectal cancer - novel biomarkers from diagnosis to therapy. Endocr Metab Immune Disord Drug Targets 20(8):1211–1226. https://doi.org/10.2174/1871530320666200506075219

    Article  CAS  PubMed  Google Scholar 

  • Yang B-L et al (2022) Circular RNA CUL2 regulates the development of colorectal cancerby modulating apoptosis and autophagy via miR-208a-3p/PPP6C. Aging 14(1):497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye M et al (2022) LncRNA NALT1 promotes colorectal cancerprogression via targeting PEG10 by sponging microRNA-574-5p. Cell Death Dis 13(11):960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X et al (2017) CXCL12/CXCR4 axis induced miR-125b promotes invasion and confers 5-fluorouracil resistance through enhancing autophagy in colorectal cancer. Sci Rep 7(1):42226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S et al (2021) A genome-scale CRISPR knock-out screen identifies microrna-5197-5p as a promising radiosensitive biomarker in colorectal cancer. Front Oncol 11:696713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Z et al (2018) Cancer-derived exosomal miR-25–3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun 9(1):5395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang Z, Gemeinhart RA (2013) Progress in microRNA delivery. J Control Release 172(3):962–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XL, Xu LL, Wang F (2017) Hsa_circ_0020397 regulates colorectal cancercell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1. Cell Biol Int 41(9):1056–1064

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2020) Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers. J Exp Clin Cancer Res 39(1):1–12

    Article  Google Scholar 

  • Zhang N et al (2021) The role of miRNAs in colorectal cancerprogression and chemoradiotherapy. Biomed Pharmacother 134:111099

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Sun X, Li L (2019) Biogenesis and function of extracellular miRNAs. ExRNA 1(1):1–9

    Article  Google Scholar 

  • Zhao S et al (2020) Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol 13(1):156

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao S et al (2022) Highly-metastatic colorectal cancercell released miR-181a-5p-rich extracellular vesicles promote liver metastasis by activating hepatic stellate cells and remodelling the tumour microenvironment. J Extracell Vesicles 11(1):e12186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L et al (2017) miR-195 enhances the radiosensitivity of colorectal cancercells by suppressing CARM1. Oncotargets Ther 10:1027–1038

    Article  CAS  Google Scholar 

  • Zhu Y et al (2018) miR-145 antagonizes SNAI1-mediated stemness and radiation resistance in colorectal cancer. Mol Ther 26(3):744–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript equally. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding author

Correspondence to Doha El-Sayed Ellakwa.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Disclosure

This data has yet to be presented orally or by poster previously.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellakwa, D.ES., Mushtaq, N., Khan, S. et al. Molecular functions of microRNAs in colorectal cancer: recent roles in proliferation, angiogenesis, apoptosis, and chemoresistance. Naunyn-Schmiedeberg's Arch Pharmacol (2024). https://doi.org/10.1007/s00210-024-03076-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-024-03076-w

Keywords

Navigation