Skip to main content

Advertisement

Log in

Peroxisome proliferator activated receptor-gamma (PPAR-γ) ligand, pioglitazone, increases analgesic and anti-inflammatory effects of naproxen

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The aim of this study was the investigation of analgesic and anti-inflammatory activity of naproxen and pioglitazone following intra-plantar injection of carrageenan and assessment of the PPAR-γ receptor involvement in these effects. Rats were intra-plantarly injected with carrageenan (1%, 100 μl) to induce thermal hyperalgesia and paw inflammation. Different groups of rats were pre-treated intraperitoneally with naproxen (1 and 10 mg/kg) or pioglitazone (3 and 10 mg/kg) or GW9662 (a selective PPAR-γ antagonist, 100 μl/paw). The volume of the paw was evaluated using a plethysmometer, and the hot plate test was employed to assess the pain threshold in the animals. Finally, TNF-α, IL-1ß, IL-6, and myeloperoxidase (MPO) activity status were evaluated in the hind paw tissue. Naproxen and pioglitazone demonstrated analgesic and anti-inflammatory activity. Concurrent injection of an ineffective dose of naproxen (1 mg/kg) with an ineffective dose of pioglitazone (3 mg/kg) caused augmented analgesic and anti-inflammatory activity, significantly (p≤0.001 and p≤0.01, respectively). Additionally, intra-plantar injection of GW-9662 before naproxen or pioglitazone significantly suppressed their analgesic (p≤0.001) and anti-inflammatory activity (p≤0.01). Also, naproxen and pioglitazone (10 mg/kg) significantly (p≤0.001) reduced carrageenan-induced MPO activity and TNF-α, IL-6, and IL-1ß releasing. Furthermore, PPAR-γ blockade significantly prevented suppressive effects of naproxen and pioglitazone on the MPO activity and inflammatory cytokines. Pioglitazone significantly increased analgesic and anti-inflammatory effects of naproxen. This study proposes that concurrent treatment with naproxen and pioglitazone may be a substitute for overcome pain and inflammation clinically, in the future, particularly in patients with cardiovascular disorders and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdelrahman M, Collin M, Thiemermann C (2004) The peroxisome proliferator-activated receptor-γ ligand 15-deoxyd12, 14 prostaglandin J2 reduces the organ injury in hemorrhagic shock. Shock 22:555–561

    CAS  PubMed  Google Scholar 

  • Abdollahi AR, Firouzian F, Haddadi R, Nourian A (2021) Indomethacin loaded dextran stearate polymeric micelles improve adjuvant-induced arthritis in rats: design and in vivo evaluation. Inflammopharmacology 29:107–121

    CAS  PubMed  Google Scholar 

  • Alsalem M, Altarifi A, Kalbouneh H, Al-Zer H, Azab B, El-Salem K (2016) Role of PPARα and PPARγ in mediating the analgesic properties of ibuprofen in vivo and the effects of dual PPARα/γ activation in inflammatory pain model in the rat. Int J Pharmacol 12:812–820

    CAS  Google Scholar 

  • Bach-Rojecky L, Lackovic Z (2005) Antinociceptive effect of botulinum toxin type a in rat model of carrageenan and capsaicin induced pain. Croat Med J 46:201–208

    PubMed  Google Scholar 

  • Berg AH, Scherer PE (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96:939–949

    CAS  PubMed  Google Scholar 

  • Bonazzi A, Mastyugin V, Mieyal PA, Dunn MW, Laniado-Schwartzman M (2000) Regulation of cyclooxygenase-2 by hypoxia and peroxisome proliferators in the corneal epithelium. J Biol Chem 275:2837–2844

    CAS  PubMed  Google Scholar 

  • Carta AR (2013) PPAR-γ: therapeutic prospects in Parkinson’s disease. Curr Drug Targets 14:743–751

    CAS  PubMed  Google Scholar 

  • Charkhpour M, Ghavimi H, Ghanbarzadeh S, Yousefi B, Khorrami A, Mesgari M, Hassanzadeh K (2015) Protective effect of pioglitazone on morphine-induced neuroinflammation in the rat lumbar spinal cord. J Biomed Sci 22:1–6

    Google Scholar 

  • Choy EH, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916

    CAS  PubMed  Google Scholar 

  • Churi SB, Abdel-Aleem OS, Tumber KK, Scuderi-Porter H, Taylor BK (2008) Intrathecal rosiglitazone acts at peroxisome proliferator–activated receptor-γ to rapidly inhibit neuropathic pain in rats. J Pain 9:639–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Culman J, Zhao Y, Gohlke P, Herdegen T (2007) PPAR-γ: therapeutic target for ischemic stroke. Trends Pharmacol Sci 28:244–249

    CAS  PubMed  Google Scholar 

  • Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Patel NS, Di Paola R, Genovese T, Chatterjee PK, Fulia F, Cuzzocrea E (2004) Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-γ, reduces the development of nonseptic shock induced by zymosan in mice. Crit Care Med 32:457–466

    CAS  PubMed  Google Scholar 

  • Cuzzocrea S, Wayman NS, Mazzon E, Dugo L, Di Paola R, Serraino I, Britti D, Chatterjee PK, Caputi AP, Thiemermann C (2002) The cyclopentenone prostaglandin 15-deoxy-Δ12, 14-prostaglandin J2attenuates the development of acute and chronic inflammation. Mol Pharmacol 61:997–1007

    CAS  PubMed  Google Scholar 

  • Derry CJ, Derry S, Moore RA, McQuay HJ (2009) Single dose oral naproxen and naproxen sodium for acute postoperative pain in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004234.pub3

  • Gabriel SE, Jaakkimainen L, Bombardier C (1991) Risk for serious gastrointestinal complications related to use of nonsteroidal anti-inflammatory drugs: a meta-analysis. Ann Intern Med 115:787–796

    CAS  PubMed  Google Scholar 

  • Ghavimi H, Azarfardian A, Maleki-Dizaji N, Hassanzadeh K, Ghanbarzadeh S, Charkhpour M (2014a) Acute administration of pioglitazone attenuates morphine withdrawal syndrome in rat: a novel role of pioglitazone. Drug Res:113–118

  • Ghavimi H, Hassanzadeh K, Maleki-Dizaji N, Azarfardian A, Ghasami S, Zolali E, Charkhpour M (2014b) Pioglitazone prevents morphine antinociception tolerance and withdrawal symptoms in rats. Naunyn Schmiedeberg's Arch Pharmacol 387:811–821

    CAS  Google Scholar 

  • Gilroy DW, Colville-Nash P, Willis D, Chivers J, Paul-Clark M, Willoughby D (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 5:698

    CAS  PubMed  Google Scholar 

  • Griggs RB, Donahue RR, Morgenweck J, Grace PM, Sutton A, Watkins LR, Taylor BK (2015) Pioglitazone rapidly reduces neuropathic pain through astrocyte and non-genomic PPARγ mechanisms. Pain 156:469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gunter B, Butler K, Wallace R, Smith S, Harirforoosh S (2017) Non-steroidal anti-inflammatory drug-induced cardiovascular adverse events: a meta-analysis. J Clin Pharm Ther 42:27–38

    CAS  PubMed  Google Scholar 

  • Haddadi R, Eyvari-Brooshghalan S, Nayebi AM, Sabahi M, Ahmadi SA (2020) Neuronal degeneration and oxidative stress in the SNc of 6-OHDA intoxicated rats; improving role of silymarin long-term treatment. Naunyn-Schmiedeberg's Archives of Pharmacology: 1-11

  • Haddadi R, Poursina M, Zeraati F, Nadi F (2018) Gastrodin microinjection suppresses 6-OHDA-induced motor impairments in parkinsonian rats: insights into oxidative balance and microglial activation in SNc. Inflammopharmacology: 1-12

  • Haddadi R, Rashtiani R (2020) Anti-inflammatory and anti-hyperalgesic effects of milnacipran in inflamed rats: involvement of myeloperoxidase activity, cytokines and oxidative/nitrosative stress. Inflammopharmacology 28:903–913

    CAS  PubMed  Google Scholar 

  • Hamblin M, Chang L, Fan Y, Zhang J, Chen YE (2009) PPARs and the cardiovascular system. Antioxid Redox Signal 11:1415–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa-Moriyama M, Kurimoto T, Nakama M, Godai K, Kojima M, Kuwaki T, Kanmura Y (2013) Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates inflammatory pain through the induction of heme oxygenase-1 in macrophages. PAIN® 154: 1402-1412

  • Houshmand G, Mansouri MT, Naghizadeh B, Hemmati AA, Hashemitabar M (2016) Potentiation of indomethacin-induced anti-inflammatory response by pioglitazone in carrageenan-induced acute inflammation in rats: role of PPARγ receptors. Int Immunopharmacol 38:434–442

    CAS  PubMed  Google Scholar 

  • Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82

    CAS  PubMed  Google Scholar 

  • Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C (2006) Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. Bmj 332:1302–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kheradmand A, Nayebi AM, Jorjani M, Khalifeh S, Haddadi R (2016) Effects of WR1065 on 6-hydroxydopamine-induced motor imbalance: possible involvement of oxidative stress and inflammatory cytokines. Neurosci Lett 627:7–12

    CAS  PubMed  Google Scholar 

  • Konturek P, Brzozowski T, Kania J, Kukharsky V, Bazela K, Kwiecien S, Harsch I, Konturek S, Hahn E (2003) Pioglitazone, a specific ligand of the peroxisome proliferator-activated receptor gamma reduces gastric mucosal injury induced by ischaemia/reperfusion in rat. Scand J Gastroenterol 38:468–476

    PubMed  Google Scholar 

  • Kvandova M, Majzúnová M, Dovinová I (2016) The role of PPAR [gamma] in cardiovascular diseases. Physiol Res 65:S343

    CAS  PubMed  Google Scholar 

  • Kwon S-G, Roh D-H, Yoon S-Y, Moon J-Y, Choi S-R, Choi H-S, Kang S-Y, Han H-J, Beitz AJ, Lee J-H (2014) Blockade of peripheral P2Y1 receptors prevents the induction of thermal hyperalgesia via modulation of TRPV1 expression in carrageenan-induced inflammatory pain rats: involvement of p38 MAPK phosphorylation in DRGs. Neuropharmacology 79:368–379

    CAS  PubMed  Google Scholar 

  • Li Y-Y, Huang S-S, Lee M-M, Deng J-S, Huang G-J (2015) Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-κB and MAPK signaling pathway in the carrageenan-induced paw edema. Int Immunopharmacol 25:332–339

    PubMed  Google Scholar 

  • Liu D, Zeng B, Zhang S, Yao S (2005) Rosiglitazone, an agonist of peroxisome proliferator-activated receptor γ, reduces pulmonary inflammatory response in a rat model of endotoxemia. Inflamm Res 54:464–470

    CAS  PubMed  Google Scholar 

  • Maeda T, Kishioka S (2009) PPAR and pain. Int Rev Neurobiol 85:165–177

    CAS  PubMed  Google Scholar 

  • Malaekehpoor SM, Derakhshandeh K, Haddadi R, Nourian A, Ghorbani-Vaghei R (2020) A polymer coated MNP scaffold for targeted drug delivery and improvement of rheumatoid arthritis. Polym Chem 11:2408–2417

    CAS  Google Scholar 

  • Maruyama K, Goto K, Hiramoto K, Tanaka S, Ooi K (2022) Indomethacin, a non-steroidal anti-inflammatory drug, induces skin dryness via PPARγ in mice. Biol Pharm Bull 45:77–85

    CAS  PubMed  Google Scholar 

  • Morgenweck J, Griggs R, Donahue R, Zadina JE, Taylor BK (2013) PPARγ activation blocks development and reduces established neuropathic pain in rats. Neuropharmacology 70:236–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad N, Saeed M, Khan H (2012) Antipyretic, analgesic and anti-inflammatory activity of Viola betonicifolia whole plant. BMC Complement Altern Med 12:59

    PubMed  PubMed Central  Google Scholar 

  • Murphy GJ, Holder JC (2000) PPAR-γ agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 21:469–474

    CAS  PubMed  Google Scholar 

  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391:79

    CAS  PubMed  Google Scholar 

  • Sadeghian Z, Eyvari-Brooshghalan S, Sabahi M, Nourouzi N, Haddadi R (2022) Post treatment with Gastrodin suppresses oxidative stress and attenuates motor disorders following 6-OHDA induced Parkinson disease. Neurosci Lett 790:136884

    CAS  PubMed  Google Scholar 

  • Solomon DH, Massarotti E, Garg R, Liu J, Canning C, Schneeweiss S (2011) Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. Jama 305:2525–2531

    CAS  PubMed  Google Scholar 

  • Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252

    CAS  PubMed  Google Scholar 

  • Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH (2006) Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 112:116–138

    CAS  PubMed  Google Scholar 

  • Vinegar R, Schreiber W, Hugo R (1969) Biphasic development of carrageenin edema in rats. J Pharmacol Exp Ther 166:96–103

    CAS  PubMed  Google Scholar 

  • Wallace JL, Chapman K, McKnight W (1999) Limited anti-inflammatory efficacy of cyclo-oxygenase-2 inhibition in carrageenan-airpouch inflammation. Br J Pharmacol 126:1200–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Waltenberger B, Pferschy-Wenzig E-M, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 92:73–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Li F, Quan Y, Shen J (2019) Avicularin ameliorates human hepatocellular carcinoma via the regulation of NF-κB/COX-2/PPAR-γ activities. Mol Med Rep 19:5417–5423

    PubMed  PubMed Central  Google Scholar 

  • Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaksh TL (1981) The antinociceptive effects of intrathecally administered levonantradol and desacetyllevonantradol in the rat. J Clin Pharmacol 21:334S–340S. https://doi.org/10.1002/j.1552-4604.1981.tb02612.x

  • Zhang J-M, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45:27

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This data was adopted from the Pharm D. thesis of Dr. Mohammad Cheraghi-poor. The authors would like to thank Research and Technology Vice-Chancellor of Hamadan University of Medical Sciences (Hamadan, Iran) for supporting this study.

Funding

This work was supported by a grant from Research and Technology Vice-Chancellor of Hamadan University of Medical Sciences, Hamadan, Iran (code: 9604132335).

Author information

Authors and Affiliations

Authors

Contributions

RH the supervisor of the study participated and was involved in the concept, design, support of the study, interpretation of data, statistical analyses, drafting, and a final check of the draft. MC doing behavioral experiments and biochemical assessment. All authors read and approved the final manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Rasool Haddadi.

Ethics declarations

Ethics approval

All procedures used in the present study were done in accordance with the National Institutes of Health ethical guidelines for the Care and Use of Laboratory Animals and approved by the University of Medical Sciences of Hamadan (UMSHA) Ethical Committee, Hamadan, Iran (ID: IR.UMSHA.REC.1396.588).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddadi, R., Cheraghi-poor, M. Peroxisome proliferator activated receptor-gamma (PPAR-γ) ligand, pioglitazone, increases analgesic and anti-inflammatory effects of naproxen. Naunyn-Schmiedeberg's Arch Pharmacol 397, 1633–1646 (2024). https://doi.org/10.1007/s00210-023-02715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02715-y

Keywords

Navigation