Skip to main content
Log in

The ameliorative effect of midazolam on empathy-like behavior in old rats

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Although studies suggest that cognitive functions in the elderly are impaired, elderly people tend to be more successful and wiser in solving emotional problems. In empathy-like behavior models, the observer rat rescues the distressed cage mate by displaying emotional and cognitive ability. The aim of the study was to investigate the changes in empathy-like behavior in older rats in comparison to adult rats. In addition, we wanted to determine the effects of alterations in neurochemicals (such as corticosterone, oxytocin, vasopressin, and their receptor levels) and emotional situations on this behavior. In our study, we initially completed empathy-like behavior tests and emotional tests (open field, elevated plus maze) and performed neurochemical examinations in the serum and brain tissues. In the second step of research, we applied a midazolam (benzodiazepine) treatment to examine the effect of anxiety on empathy-like behavior. In the old rats, we observed that empathy-like behavior deteriorated, and anxiety signs were more pronounced. We detected a positive correlation between the latency in empathy-like behavior and corticosterone levels and v1b receptor levels. The midazolam effect on empathy-like behavior was attenuated by flumazenil (a benzodiazepine receptor antagonist). The recordings of ultrasonic vocalization showed frequencies around 50 kHz emitted by the observer and this was associated with the expectation of social contact. Our results state that compared to adult rats, old rats were more concerned and failed during empathy-like behavior. Midazolam may improve this behavior by anxiolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Arsenijevic Y, Dreifuss JJ, Vallet P et al (1995) Reduced binding of oxytocin in the rat brain during aging. Brain Res 698:275–279

    Article  CAS  PubMed  Google Scholar 

  • Bailey PE, Henry JD, Von Hippel W (2008) Empathy and social functioning in late adulthood. Aging Ment Health 12:499–503

    Article  PubMed  Google Scholar 

  • Baron-Cohen S, Wheelwright S (2004) The empathy quotient: an investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. J Autism Dev Disord 34:163–175

    Article  PubMed  Google Scholar 

  • Barraza JA, Zak PJ (2009) Empathy toward strangers triggers oxytocin release and subsequent generosity. Ann NY Acad Sci 1167:182–189

    Article  PubMed  Google Scholar 

  • Beadle JN, Sheehan AH, Dahlben B et al (2015) Aging, empathy, and prosociality. J Gerontol B Psychol Sci Soc Sci 70:213–222

    Article  Google Scholar 

  • Ben-Ami Bartal I, Shan H, Molasky NM et al (2016) Anxiolytic treatment impairs helping behavior in rats. Front Psychol 7:850

    Article  PubMed  PubMed Central  Google Scholar 

  • Broniarczyk-Czarniak M, Szemraj J, Śmigielski J et al (2022) The role of OXT, OXTR, AVP, and AVPR1a gene expression in the course of schizophrenia. Curr Issues Mol Biol 44:336–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalheiro J, Seara-Cardoso A, Mesquita AR et al (2019) Helping behavior in rats (Rattus norvegicus) when an escape alternative is present. J Comp Psychol 133:452–462

    Article  PubMed  Google Scholar 

  • Cavaliere DR, Maisonnette S, Krahe TE et al (2020) High- and low-conditioned behavioral effects of midazolam in carioca high- and low-conditioned freezing rats in an ethologically based test. Neurosci Lett 715:134632

    Article  CAS  PubMed  Google Scholar 

  • Chaouloff F, Durand M, Mormède P (1997) Anxiety- and activity-related effects of diazepam and chlordiazepoxide in the rat light/dark and dark/light tests. Behav Brain Res 85:27–35

    Article  CAS  PubMed  Google Scholar 

  • Corbani M, Marir R, Trueba M et al (2018) Neuroanatomical distribution and function of the vasopressin V1B receptor in the rat brain deciphered using specific fluorescent ligands. Gen Comp Endocrinol 258:15–32

    Article  CAS  PubMed  Google Scholar 

  • Davidson NB, Hurst JL (2019) Testing the potential of 50 kHz rat calls as a species-specific rat attractant. PLoS ONE 14:e0211601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Y, Wei J, Geng W et al (2019) The effect of short-term use of benzodiazepines on cognitive function of major depressive disorder patients being treated with antidepressants. J Affect Disord 256:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ebner NC, Maura GM, MacDonald K et al (2013) Oxytocin and socioemotional aging: current knowledge and future trends. Front Human Neurosci 7:487

    Article  Google Scholar 

  • Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81:629–683

    Article  CAS  PubMed  Google Scholar 

  • Glisky EL (2007) Changes in cognitive function in human aging. In: Riddle DR (ed) Brain Aging: Models, Methods, and Mechanisms (1st edn). CRC Press/Taylor & Francis, Boca Raton, p 18. https://www.ncbi.nlm.nih.gov/books/NBK3885/

  • Gross JJ, Carstensen LL, Pasupathi M et al (1997) Emotion and aging: experience, expression, and control. Psychol Aging 12:590–599

    Article  CAS  PubMed  Google Scholar 

  • Hosgorler F, Koc B, Kizildag S et al (2020) Magnesium acetyl taurate prevents tissue damage and deterioration of prosocial behavior related with vasopressin levels in traumatic brain injured rats. Turk Neurosurg 30:723–733

    PubMed  Google Scholar 

  • Hühnel I, Fölster M, Werheid K et al (2014) Empathic reactions of younger and older adults: no age related decline in affective responding. J Exp Soc Psychol 50:136–143

    Article  Google Scholar 

  • Jung YH, Shin NY, Jang JH et al (2019) Relationships among stress, emotional intelligence, cognitive intelligence, and cytokines. Medicine 98:e15345

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandis S, Ates M, Kizildag S et al (2018) Acetaminophen (paracetamol) affects empathy-like behavior in rats: dose-response relationship. Pharmacol Biochem Behav 175:146–151

    Article  CAS  PubMed  Google Scholar 

  • Karakilic A, Kizildag S, Kandis S et al (2018) The effects of acute foot shock stress on empathy levels in rats. Behav Brain Res 349:31–36

    Article  PubMed  Google Scholar 

  • Katz DA, Locke C, Greco N et al (2017) Hypothalamic-pituitary-adrenal axis and depression symptom effects of an arginine vasopressin type 1B receptor antagonist in a one-week randomized phase 1b trial. Brain Behav 7:e00628–e00628

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight LK, Stoica T, Fogleman ND et al (2019) Convergent neural correlates of empathy and anxiety during socioemotional processing. Front Hum Neurosci 13:94. https://doi.org/10.3389/fnhum.2019.00094

  • Knobloch HS, Charlet A, Hoffmann LC et al (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553–566

    Article  CAS  PubMed  Google Scholar 

  • Kollmuss A, Agyeman J (2002) Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environ Educ Res 8:239–260

    Article  Google Scholar 

  • Kosfeld M, Heinrichs M, Zak PJ et al (2005) Oxytocin increases trust in humans. Nature 435:673–676

    Article  CAS  PubMed  Google Scholar 

  • Lamm C, Batson CD, Decety J (2007) The neural substrate of human empathy: effects of perspective-taking and cognitive appraisal. J Cogn Neurosci 19:42–58

    Article  PubMed  Google Scholar 

  • Langer K, Hagedorn B, Stock L-M et al (2020) Acute stress improves the effectivity of cognitive emotion regulation in men. Sci Rep 10:11571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Macbeth AH, Pagani JH et al (2009) Oxytocin: the great facilitator of life. Prog Neurobiol 88:127–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lomidze N, Zhvania MG, Tizabi Y et al (2020) Age-related behavioral and ultrastructural changes in the rat amygdala. Dev Neurobiol 80:433–442

    Article  CAS  PubMed  Google Scholar 

  • Miao Y-L, Guo W-Z, Shi W-Z et al (2014) Midazolam ameliorates the behavior deficits of a rat posttraumatic stress disorder model through dual 18 kDa translocator protein and central benzodiazepine receptor and neurosteroidogenesis. PLoS ONE 9:e101450–e101450

    Article  PubMed  PubMed Central  Google Scholar 

  • Olkkola KT, Ahonen J (2008) Midazolam and other benzodiazepines. In: Schüttler J, Schwilden H (eds) Modern anesthetics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 335–360

    Chapter  Google Scholar 

  • Panksepp J (2010) Chapter 6.1 - Emotional causes and consequences of social-affective vocalization. In: Brudzynski SM (ed) Handbook of behavioral neuroscience. Elsevier, London, pp 201–208. https://doi.org/10.1016/B978-0-12-374593-4.00020-6

  • Pisansky MT, Hanson LR, Gottesman II et al (2017) Oxytocin enhances observational fear in mice. Nat Commun 8:2102

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitsikas N, Tarantilis PA (2020) The GABA(A)-benzodiazepine receptor antagonist flumazenil abolishes the anxiolytic effects of the active constituents of Crocus sativus L. crocins in rats. Molecules 25(23):5647. https://doi.org/10.3390/molecules25235647

  • Porges SW (2003) Social engagement and attachment: a phylogenetic perspective. Ann NY Acad Sci 1008:31–47

    Article  PubMed  Google Scholar 

  • Potasiewicz A, Holuj M, Litwa E et al (2020) Social dysfunction in the neurodevelopmental model of schizophrenia in male and female rats: behavioural and biochemical studies. Neuropharmacology 170:108040

    Article  CAS  PubMed  Google Scholar 

  • Qi C, Roseboom PH, Nanda SA et al (2010) Anxiety-related behavioral inhibition in rats: a model to examine mechanisms underlying the risk to develop stress-related psychopathology. Genes Brain Behav 9:974–984

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues-Alves PDSEB, Flório JC, Lebrun I et al (2009) Moxidectin interference on motor activity of rats %. J Braz Arch Biol Technol 52:883–891

    Article  CAS  Google Scholar 

  • Ruffman T, Henry JD, Livingstone V et al (2008) A meta-analytic review of emotion recognition and aging: implications for neuropsychological models of aging. Neurosci Biobeh Rev 32:863–881

    Article  Google Scholar 

  • Sato N, Tan L, Tate K et al (2015) Erratum to: Rats demonstrate helping behavior toward a soaked conspecific. Anim Cogn 18:1049

    Article  PubMed  Google Scholar 

  • Shepherd JK, Grewal SS, Fletcher A et al (1994) Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology 116:56–64

    Article  CAS  PubMed  Google Scholar 

  • Shoji H, Mizoguchi K (2011) Aging-related changes in the effects of social isolation on social behavior in rats. Physiol Behav 102:58–62

    Article  CAS  PubMed  Google Scholar 

  • Smith CJW, Poehlmann ML, Li S et al (2017) Age and sex differences in oxytocin and vasopressin V1a receptor binding densities in the rat brain: focus on the social decision-making network. Brain Struc Funct 222:981–1006

    Article  CAS  Google Scholar 

  • Song C, Berridge KC, Kalueff AV (2016) ‘Stressing’ rodent self-grooming for neuroscience research. Nat Rev Neurosci 17:591–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotoudeh N, Namavar MR, Zarifkar A et al (2020) Age-dependent changes in the medial prefrontal cortex and medial amygdala structure, and elevated plus-maze performance in the healthy male Wistar rats. IBRO Rep 9:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steimer T (2011) Animal models of anxiety disorders in rats and mice: some conceptual issues. Dialogues Clin Neurosci 13:495–506

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomson F, Napier S (2015) Arginine-vasopressin. In: Stolerman IP, Price LH (eds) Encyclopedia of psychopharmacology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 195–202

    Google Scholar 

  • Uzefovsky F, Shalev I, Israel S et al (2015) Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy. Horm Behav 67:60–65

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Ye S, Shi J, Huang H (2018) Relationship between the anxious symptoms and the neurotransmitter in Parkinson’s mice with different dosages of MPTP. Braz Arch Biol Technol 61:e18160721. https://doi.org/10.1590/1678-4324-2018160721

  • Yuksel O, Ates M, Kizildag S, Yuce Z, Koc B, Kandis S, Guvendi G, Karakilic A, Gumus H, Uysal N (2019) Regular aerobic voluntary exercise increased oxytocin in female mice: cause to decrease anxiety and increase empathy-like behaviors. Balkan Med J 36(5):257–262. https://doi.org/10.4274/balkanmedj.galenos.2019.2018.12.87

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ferda Hosgorler. Data curation: Ferda Hosgorler, Erhan Caner Akkaya, Rabia Ilgin, Servet Kizildag, Basar Koc. Formal analysis: Ferda Hosgorler, Erhan Caner Akkaya, Rabia Ilgin, Hikmet Gumus. Funding acquisition: Nazan Uysal. Investigation: Ferda Hosgorler, Erhan Caner Akkaya, Rabia Ilgin, Basar Koc, Servet Kizildag. Methodology: Ferda Hosgorler, Nazan Uysal. Resources: Nazan Uysal. Validation: all authors. Writing — original draft: Ferda Hosgorler. Writing — review and editing: all authors. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Ferda Hosgorler.

Ethics declarations

Ethical approval

The study was approved by the Experimental Animals Ethics Committee (approval number: 05.04.2018-40/2018). The rats’ care and experimental procedures were performed by the experimental study team in accordance with the “Guide for the Care and Use of Laboratory Animals” guide.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosgorler, F., Akkaya, E.C., Ilgin, R. et al. The ameliorative effect of midazolam on empathy-like behavior in old rats. Naunyn-Schmiedeberg's Arch Pharmacol 396, 3183–3193 (2023). https://doi.org/10.1007/s00210-023-02526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02526-1

Keywords

Navigation