Skip to main content

Advertisement

Log in

Knockdown of caveolin-1 decreases activity of breast cancer resistance protein (BCRP/ABCG2) and increases chemotherapeutic sensitivity

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) is supposed to be a major determinant of the multidrug resistance phenotype of tumors by extruding chemically diverse cytostatic drugs out of tumor cells. BCRP physically and possibly also functionally interacts with caveolin-1 (CAV1, encoded by Cav1), an integral membrane protein of lipid rafts important for signal transduction and membrane trafficking. Moreover, Cav1 is linked to an aggressive phenotype of cancer cells in various tumors. We therefore investigated whether Cav1 plays a functional role in the regulation of BCRP transport activity and in the resistance against chemotherapeutics that are BCRP substrates. As a cell model, we used the BCRP overexpressing cell line MDCKII-BCRP and the corresponding parental cell line MDCKII as a control. Cav1 expression was down-regulated using retrovirus-mediated RNA interference technology. BCRP activity was assessed by pheophorbide A efflux assay and the resistance towards cytostatic drugs was measured by proliferation assays. Efficient knockdown of Cav1 reduced Cav1 expression by 85–95% and BCRP activity by 35%. Concurrently, it reduced resistance towards the BCRP substrate mitoxantrone but not towards vincristine, a chemotherapeutic that is not extruded by BCRP. Western blot analysis of gradient ultracentrifugation fractions and immunofluorescence demonstrates that BCRP localization within the plasma membrane was largely unaltered in Cav1-deficient cells compared to controls. The diminished BCRP function after Cav1 knockdown is, thus, likely mediated by alterations in protein–protein interactions and suggests a positive regulation of BCRP function by CAV1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

AOTF:

Acousto optic tunable filter

BCRP:

Breast cancer resistance protein

Cav:

Caveolin

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

DRM:

Detergent-resistant membrane

EDTA:

Ethylene diamine tetraacetic acid

FTC:

Fumitremorgin C

GFP:

Green fluorescence protein

MDCK:

Madin–Darby canine kidney

MDR:

Multidrug resistance

MF:

Median fluorescence

MRP:

Multidrug resistance-related protein

PBS:

Phosphate-buffered saline

PBS (+):

PBS containing 0.1 mM CaCl2 and 0.1 mM MgCl2

PFA:

Paraformaldehyde

P-gp:

P-glycoprotein

PhA:

Pheophorbide A (3S-(3alpha,4beta,21beta))-14-ethyl-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-9-vinylphorbine-3-propionic acid)

RNAi:

RNA interference

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TNE buffer:

TRIS–NaCl–EDTA buffer

TRIS:

2-Amino-2-(hydroxymethyl)-propane-1,3-diol

References

  • Abbott BL (2006) ABCG2 (BCRP) a cytoprotectant in normal and malignant stem cells. Clin Adv Hematol Oncol 4:63–72

    PubMed  Google Scholar 

  • Albermann N, Schmitz-Winnenthal FH, Z’graggen K, Volk C, Hoffmann MM, Haefeli WE, Weiss J (2005) Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol 70:949–958

    Article  CAS  PubMed  Google Scholar 

  • Barakat S, Turcotte S, Demeule M, Lachambre M-P, Régina A, Baggetto LG, Béliveau R (2008) Regulation of brain endothelial cell migration and angiogenesis by P-glycoprotein/caveolin-1 interaction. Biochem Biophys Res Commun 372:440–446

    Article  CAS  PubMed  Google Scholar 

  • Benderra Z, Faussat AM, Sayada L, Perrot JY, Tang R, Chaoui D, Morjani H, Marzac C, Marie JP, Legrand O (2005) MRP3, BCRP, and P-glycoprotein activities are prognostic factors in adult acute myeloid leukemia. Clin Cancer Res 11:7764–7772

    Article  CAS  PubMed  Google Scholar 

  • Brown D (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21:430–439

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Chen J (2004) Overexpression of caveolin-1 induces alteration of multidrug resistance in Hs578T breast adenocarcinoma cells. Int J Cancer 111:522–529

    Article  CAS  PubMed  Google Scholar 

  • Candeil L, Gourdier I, Peyron D, Vezzio N, Copois V, Bibeau F, Orsetti B, Scheffer GL, Ychou M, Khan QA, Pommier Y, Pau B, Martineau P, Del Rio M (2004) ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases. Int J Cancer 109:848–854

    Article  CAS  PubMed  Google Scholar 

  • Couet J, Shengwen L, Okamoto T, Ikezu T, Lisanti MP (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. J Biol Chem 272:6525–6533

    Article  CAS  PubMed  Google Scholar 

  • Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–1166

    Article  CAS  PubMed  Google Scholar 

  • Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  PubMed  Google Scholar 

  • Diestra JE, Scheffer GL, Català I, Maliepaard M, Schellens JH, Scheper RJ, Germà-Lluch JR, Izquierdo MA (2002) Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol 198:213–219

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs JW, Klappe K, Hummel I, Kok JW (2004) ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells. J Biol Chem 279:5734–5738

    Article  CAS  PubMed  Google Scholar 

  • Hnasko R, Lisanti MP (2003) The biology of caveolae: lessons from caveolin knockout mice and implications for human disease. Mol Interv 3:445–464

    Article  CAS  PubMed  Google Scholar 

  • Gillet JP, Efferth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta 1775:237–262

    CAS  PubMed  Google Scholar 

  • Kirkham M, Parton RG (2005) Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta 1746:350–363

    Article  CAS  Google Scholar 

  • Krishnamurthy P, Schuetz JD (2006) Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol 46:381–410

    Article  CAS  PubMed  Google Scholar 

  • Lavie Y, Fiucci G, Liscovitch M (1998) Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem 273:32380–32383

    Article  CAS  PubMed  Google Scholar 

  • Lavie Y, Fiucci G, Liscovitch M (2001) Upregulation of caveolin in multidrug resistance cancer cells: functional implications. Adv Drug Deliv Rev 49:317–323

    Article  CAS  PubMed  Google Scholar 

  • Mao Q, Unadkat JD (2005) Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 7:E118–E133

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Peranen J, Schreiner R, Weiland F, Kurzchalia T, Simons K (1995) VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 92:10339–10343

    Article  CAS  PubMed  Google Scholar 

  • Orlowski S, Martin S, Escargueil A (2006) P-glycoprotein and ‘lipid rafts’: some ambiguous mutual relationships (floating on them, building them or meeting them by chance?). Cell Mol Life Sci 63:1038–1059

    Article  CAS  PubMed  Google Scholar 

  • Pál Á, Méhn D, Molnár É, Gedey S, Mészáros P, Nagy T, Glavinas H, Janáky T, von Richter O, Báthori G, Szente L, Krajcsi P (2007) Cholesterol potentiates ABCG2 activity in a heterologous expression system—improved in vitro model to study function of human ABCG2. J Pharmacol Exp Ther 321:1085–1094

    Article  PubMed  Google Scholar 

  • Pavek P, Merino G, Wagenaar E, Bolscher E, Novotna M, Jonker JW, Schinkel AH (2005) Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4, 5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther 312:144–152

    Article  CAS  PubMed  Google Scholar 

  • Peters T, Lindenmaier H, Haefeli WE, Weiss J (2006) Interaction of the mitotic kinesin Eg5 inhibitor monastrol with P-glycoprotein. Naunyn-Schmiedeberg’s Arch Pharmacol 372:291–299

    Article  CAS  Google Scholar 

  • Rabindran SK, He H, Singh M, Brown E, Collins KI, Annable T, Greenberger LM (1998) Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res 58:5850–5858

    CAS  PubMed  Google Scholar 

  • Sauerbrey A, Sell W, Steinbach D, Voigt A, Zintl F (2002) Expression of the BCRP gene (ABCG2/MXR/ABCP) in childhood acute lymphoblastic leukaemia. Br J Haematol 118:147–150

    Article  CAS  PubMed  Google Scholar 

  • Schuck S, Manninen A, Honsho M, Füllekrug J, Simons K (2004) Generation of single and double knockdowns in polarized epithelial cells by retrovirus-mediated RNA interference. Proc Natl Acad Sci USA 101:4912–4917

    Article  CAS  PubMed  Google Scholar 

  • Schwencke C, Braun-Dullaeus RC, Wunderlich C, Strasser RH (2006) Caveolae and caveolin in transmembrane signaling: implications for human disease. Cardiovasc Res 70:42–49

    Article  CAS  PubMed  Google Scholar 

  • Shatz M, Liscovitch M (2008) Caveolin-1: a tumor-promoting role in human cancer. Int J Radiat Biol 84:177–189

    Article  CAS  PubMed  Google Scholar 

  • Smart EJ, Ying YS, Donzell WC, Anderson RGW (1996) A role for caveolin in transport of cholesterol from the endoplasmatic reticulum to plasma membrane. J Biol Chem 271:29427–29435

    Article  CAS  PubMed  Google Scholar 

  • Storch CH, Ehehalt R, Haefeli WE, Weiss J (2007) Localization of the human breast cancer resistance protein (BCRP/ABCG2) in lipid rafts/caveolae and modulation of its activity by cholesterol in vitro. J Pharmacol Exp Ther 323:257–264

    Article  CAS  PubMed  Google Scholar 

  • Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  PubMed  Google Scholar 

  • Telbisz A, Müller M, Özvegy-Laczka C, Homolya L, Szente L, Váradi A, Sarkadi B (2007) Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter. Biochim Biophys Acta 1768:2698–2713

    Article  CAS  PubMed  Google Scholar 

  • Yoh K, Ishii G, Yokose T, Minegishi Y, Tsuta K, Goto K, Nishiwaki Y, Kodama T, Suga M, Ochiai A (2004) Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin Cancer Res 10:1691–1697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. A. H. Schinkel (Amsterdam, The Netherlands) for generously providing the cell line MDCKII-BCRP and the National Cancer Institute (Rockville, USA) for providing FTC. Moreover, we would like to thank Richard Sparla for his help with transfection and transduction.

The project was funded by the Wilhelm-Sander Stiftung (#2008.005.1). Caroline Henrike Storch was supported by a fellowship of the Ernst Schering Foundation for doctoral students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Weiss.

Additional information

Melanie Herzog and Caroline Henrike Storch contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, M., Storch, C.H., Gut, P. et al. Knockdown of caveolin-1 decreases activity of breast cancer resistance protein (BCRP/ABCG2) and increases chemotherapeutic sensitivity. Naunyn-Schmied Arch Pharmacol 383, 1–11 (2011). https://doi.org/10.1007/s00210-010-0568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0568-8

Keywords

Navigation