Skip to main content

Advertisement

Log in

Effect of verapamil on tachycardia-induced early cellular electrical remodeling in rabbit atrium

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We investigated the effects of a 7-day verapamil pretreatment (VPT, 7.5 mg/kg bodyweight subcutaneously every 12 h) on ionic currents and molecular mechanisms underlying tachycardia-induced early electrical remodeling after 24-h rapid atrial pacing (RAP, 600 bpm) in rabbit atrium. Animals were divided into four groups (n = 6 each group): control (not paced, no verapamil), paced only, verapamil only and verapamil and paced, respectively. VPT doubled ICa,L [7.0 ± 0.7 pA/pF (control) vs 14.2 ± 0.6 pA/pF (verapamil only)]. RAP reduced ICa,L by 48% to 3.6 ± 0.7 pA/pF (paced only). RAP did not affect ICa,L in verapamil-treated animals and averaged 15.3 ± 0.2 pA/pF (paced and verapamil). RAP resulted in a significant decrease of the expression of the α1c subunit (−24.7%) and the β2A subunit (−13.3%), respectively. VPT led to a similar alteration of subunit expression as RAP [“control” vs “verapamil only”, decrease of α1c subunit (−25.4%), but no significant change in β2A subunit expression]. However, after VPT, further diminishment of α1c and β2A subunit expression after rapid atrial pacing was absent. (“verapamil” vs “verapamil and paced”, n = 6 both groups). RAP decreased Ito [−45%, 51.5 ± 3.9 pA/pF (control) vs 26.8 ± 1.5 pA/pF (paced only)] and was not influenceable by VPT. IK1 was neither affected by RAP nor verapamil pretreatment. Downregulation of α1c and β2A subunit expression and the resulting decay of ICa,L current densities were prevented by verapamil. However, these effects are abolished by multiple other adverse effects of verapamil on atrial electrophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allessie MA (1998) Atrial electrophysiologic remodeling: another vicious circle? J Cardiovasc Electrophysiol 9:1378–1393

    Article  PubMed  CAS  Google Scholar 

  • Allessie MA, Boyden PA, Camm AJ, Kleber AG, Lab MJ, Legato MJ, Rosen MR, Schwartz PJ, Spooner PM, Van W, Waldo AL (2001) Pathophysiology and prevention of atrial fibrillation. Circulation 103:769–777

    PubMed  CAS  Google Scholar 

  • Bosch RF, Nattel S (2002) Cellular electrophysiology of atrial fibrillation. Cardiovasc Res 54:259–269

    Article  PubMed  CAS  Google Scholar 

  • Bosch RF, Scherer CR, Rub N, Wohrl S, Steinmeyer K, Haase H, Busch AE, Seipel L, Kuhlkamp V (2003) Molecular mechanisms of early electrical remodeling: transcriptional downregulation of ion channel subunits reduces I(Ca,L) and I(to) in rapid atrial pacing in rabbits. J Am Coll Cardiol 41:858–869

    Article  PubMed  CAS  Google Scholar 

  • Bosch RF, Wang Z, Li GR, Nattel S (1999a) Electrophysiological mechanisms by which hypothyroidism delays repolarization in guinea pig hearts. Am J Physiol 277:H211–H220

    PubMed  CAS  Google Scholar 

  • Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kuhlkamp V (1999b) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 44:121–131

    Article  PubMed  CAS  Google Scholar 

  • Brice NL, Berrow NS, Campbell V, Page KM, Brickley K, Tedder I, Dolphin AC (1997) Importance of the different beta subunits in the membrane expression of the alpha1A and alpha2 calcium channel subunits: studies using a depolarization-sensitive alpha1A antibody. Eur J Neurosci 9:749–759

    Article  PubMed  CAS  Google Scholar 

  • Brundel BJ, Van Gelder IC, Henning RH, Tuinenburg AE, Deelman LE, Tieleman RG, Grandjean JG, Van Gilst WH, Crijns HJ (1999) Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc Res 42:443–454

    Article  PubMed  CAS  Google Scholar 

  • Brundel BJ, Henning RH, Kampinga HH, Van Gelder IC, Crijns HJ (2002) Molecular mechanisms of remodeling in human atrial fibrillation. Cardiovasc Res 54:315–324

    Article  PubMed  CAS  Google Scholar 

  • Chien AJ, Zhao X, Shirokov RE, Puri TS, Chang CF, Sun D, Rios E, Hosey MM (1995) Roles of a membrane-localized beta subunit in the formation and targeting of functional L-Type Ca2+ channels. J Biol Chem 270:30036–30044

    Article  PubMed  CAS  Google Scholar 

  • Chouabe C, Drici MD, Romey G, Barhanin J (2000) Effects of calcium channel blockers on cloned cardiac K+ channels IKr and IKs. Therapie 55:195–202

    PubMed  CAS  Google Scholar 

  • Christ T, Boknik P, Wohrl S, Wettwer E, Graf EM, Bosch RF, Knaut M, Schmitz W, Ravens U, Dobrev D (2004) L-Type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 110:2651–2657

    Article  PubMed  CAS  Google Scholar 

  • Colecraft HM, Alseikhan B, Takahashi SX, Chaudhuri D, Mittman S, Yegnasubramanian V, Alvania RS, Johns DC, Marban E, Yue DT (2002) Novel functional properties of Ca(2+) channel beta subunits revealed by their expression in adult rat heart cells. J Physiol 541:435–452

    Article  PubMed  CAS  Google Scholar 

  • Daoud EG, Knight BP, Weiss R, Bahu M, Paladino W, Goyal R, Man KC, Strickberger SA, Morady F (1997) Effect of verapamil and procainamide on atrial fibrillation-induced electrical remodeling in humans. Circulation 96:1542–1550

    PubMed  CAS  Google Scholar 

  • Davison R, Hartz R, Kaplan K, Parker M, Feiereisel P, Michaelis L (1985) Prophylaxis of supraventricular tachyarrhythmia after coronary bypass surgery with oral verapamil: a randomized, double-blind trial. Ann Thorac Surg 39:336–339

    Article  PubMed  CAS  Google Scholar 

  • Deschenes I, Tomaselli GF (2002) Modulation of Kv4.3 current by accessory subunits. FEBS Lett 528:183–188

    Article  PubMed  CAS  Google Scholar 

  • Dobrev D (2004) [Molecular basis of remodelling in atrial fibrillation]. Dtsch Med Wochenschr 129:827–830

    Article  PubMed  CAS  Google Scholar 

  • Duytschaever MF, Garratt CJ, Allessie MA (2000) Profibrillatory effects of verapamil but not of digoxin in the goat model of atrial fibrillation. J Cardiovasc Electrophysiol 11:1375–1385

    Article  PubMed  CAS  Google Scholar 

  • Fareh S, Villemaire C, Nattel S (1998) Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling. Circulation 98:2202–2209

    PubMed  CAS  Google Scholar 

  • Fareh S, Benardeau A, Thibault B, Nattel S (1999) The T-Type Ca(2+) Channel blocker mibefradil prevents the development of a substrate for atrial fibrillation by tachycardia-induced atrial remodeling in dogs. Circulation 100:2191–2197

    PubMed  CAS  Google Scholar 

  • Gao T, Chien AJ, Hosey MM (1999) Complexes of the alpha1C and beta subunits generate the necessary signal for membrane targeting of class C L-type calcium channels. J Biol Chem 274:2137–2144

    Article  PubMed  CAS  Google Scholar 

  • Gao T, Cuadra AE, Ma H, Bunemann M, Gerhardstein BL, Cheng T, Eick RT, Hosey MM (2001) C-terminal fragments of the alpha 1C (CaV1.2) subunit associate with and regulate L-type calcium channels containing C-terminal-truncated alpha 1C subunits. J Biol Chem 276:21089–21097

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Lau CP, Chiu SW, Li GR (2004) Inhibition of ultra-rapid delayed rectifier K+ current by verapamil in human atrial myocytes. J Mol Cell Cardiol 36:257–263

    Article  PubMed  CAS  Google Scholar 

  • Gaspo R, Bosch RF, Talajic M, Nattel S (1997) Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model. Circulation 96:4027–4035

    PubMed  CAS  Google Scholar 

  • Grammer JB, Bosch RF, Kuhlkamp V, Seipel L (2000) Molecular remodeling of Kv4.3 potassium channels in human atrial fibrillation. J Cardiovasc Electrophysiol 11:626–633

    Article  PubMed  CAS  Google Scholar 

  • Grammer JB, Zeng X, Bosch RF, Kuhlkamp V (2001) Atrial L-type Ca2+-channel, beta-adrenorecptor, and 5-hydroxytryptamine type 4 receptor MRNAs in human atrial fibrillation. Basic Res Cardiol 96:82–90

    Article  PubMed  CAS  Google Scholar 

  • Gurnett CA, De Waard M, Campbell KP (1996) Dual function of the voltage-dependent Ca2+ channel alpha 2 delta subunit in current stimulation and subunit interaction. Neuron 16:431–440

    Article  PubMed  CAS  Google Scholar 

  • Haase H, Pfitzmaier B, McEnery MW, Morano I (2000) Expression of Ca(2+) channel subunits during cardiac ontogeny in mice and rats: identification of fetal alpha(1C) and beta subunit isoforms. J Cell Biochem 76:695–703

    Article  PubMed  CAS  Google Scholar 

  • Herzig S, Neumann J (2000) Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 80:173–210

    PubMed  CAS  Google Scholar 

  • Hohaus A, Poteser M, Romanin C, Klugbauer N, Hofmann F, Morano I, Haase H, Groschner K (2000) Modulation of the smooth-muscle L-type Ca2+ channel alpha1 subunit (alpha1C-b) by the beta2a subunit: a peptide which inhibits binding of beta to the I-II linker of alpha1 induces functional uncoupling. Biochem J 348(Pt 3):657–665

    Article  PubMed  CAS  Google Scholar 

  • Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87:1095–1102

    PubMed  CAS  Google Scholar 

  • Khairy P, Nattel S (2002) New insights into the mechanisms and management of atrial fibrillation. CMAJ 167:1012–1020

    PubMed  Google Scholar 

  • Kinebuchi O, Mitamura H, Shiroshita-Takeshita A, Kurita Y, Ieda M, Ohashi N, Fukuda Y, Sato T, Miyoshi S, Hara M, Takatsuki S, Nagumo M, Ogawa S (2004) Oral verapamil attenuates the progression of pacing-induced electrical and mechanical remodeling of the atrium. Circ J 68:494–500

    Article  PubMed  CAS  Google Scholar 

  • Koike Y, Shimamura K, Shudo I, Saito H (1979) Pharmacokinetics of verapamil in man. Res Commun Chem Pathol Pharmacol 24:37–47

    PubMed  CAS  Google Scholar 

  • Kurita Y, Mitamura H, Shiroshita-Takeshita A, Yamane A, Ieda M, Kinebuchi O, Sato T, Miyoshi S, Hara M, Takatsuki S, Ogawa S (2002) Daily oral verapamil before but not after rapid atrial excitation prevents electrical remodeling. Cardiovasc Res 54:447–455

    Article  PubMed  CAS  Google Scholar 

  • Lai LP, Su MJ, Lin JL, Lin FY, Tsai CH, Chen YS, Huang SK, Tseng YZ, Lien WP (1999) Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca(2+)-ATPase MRNA in human atrial fibrillation without significant change in the MRNA of ryanodine receptor, calsequestrin and phospholamban: an insight into the mechanism of atrial electrical remodeling. J Am Coll Cardiol 33:1231–1237

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Yu WC, Cheng JJ, Hung CR, Ding YA, Chang MS, Chen SA (2000) Effect of verapamil on long-term tachycardia-induced atrial electrical remodeling. Circulation 101:200–206

    PubMed  CAS  Google Scholar 

  • Lee KT, Chu CS, Lin TH, Yen HW, Voon WC, Sheu SH, Lai WT (2007) Effects of verapamil on superior vena cava electrical remodeling induced by short-term pacing from right atrium and superior vena cava in human. Int J Cardiol 120:380–386

    Article  PubMed  Google Scholar 

  • Moriguchi M, Niwano S, Yoshizawa N, Kojima J, Inuo K, Izumi T (2003) Verapamil suppresses the inhomogeneity of electrical remodeling in a canine long-term rapid atrial stimulation model. Pacing Clin Electrophysiol 26:2072–2082

    Article  PubMed  Google Scholar 

  • Radicke S, Cotella D, Graf EM, Banse U, Jost N, Varro A, Tseng GN, Ravens U, Wettwer E (2006) Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts. Cardiovasc Res 71:695–703

    Article  PubMed  CAS  Google Scholar 

  • Rampe D, Wible B, Fedida D, Dage RC, Brown AM (1993) Verapamil blocks a rapidly activating delayed rectifier K+ channel cloned from human heart. Mol Pharmacol 44:642–648

    PubMed  CAS  Google Scholar 

  • Rolf S, Haverkamp W, Borggrefe M, Musshoff U, Eckardt L, Mergenthaler J, Snyders DJ, Pongs O, Speckmann EJ, Breithardt G, Madeja M (2000) Effects of antiarrhythmic drugs on cloned cardiac voltage-gated potassium channels expressed in Xenopus oocytes. Naunyn Schmiedebergs Arch Pharmacol 362:22–31

    Article  PubMed  CAS  Google Scholar 

  • Schotten U, Haase H, Frechen D, Greiser M, Stellbrink C, Vazquez-Jimenez JF, Morano I, Allessie MA, Hanrath P (2003) The L-type Ca2+-channel subunits alpha1C and beta2 are not downregulated in atrial myocardium of patients with chronic atrial fibrillation. J Mol Cell Cardiol 35:437–443

    Article  PubMed  CAS  Google Scholar 

  • Schroder E, Magyar J, Burgess D, Andres D, Satin J (2007) Chronic verapamil treatment remodels ICa,L in mouse ventricle. Am J Physiol Heart Circ Physiol 292:H1906–H1916

    Article  PubMed  CAS  Google Scholar 

  • Schutz E, Ha HR, Buhler FR, Follath F (1982) Serum concentration and antihypertensive effect of slow-release verapamil. J Cardiovasc Pharmacol 4(Suppl 3):S346–S349

    PubMed  Google Scholar 

  • Seitelberger R, Hannes W, Gleichauf M, Keilich M, Christoph M, Fasol R (1994) Effects of diltiazem on perioperative ischemia, arrhythmias, and myocardial function in patients undergoing elective coronary bypass grafting. J Thorac Cardiovasc Surg 107:811–821

    PubMed  CAS  Google Scholar 

  • Shenasa M, Kus T, Fromer M, LeBlanc RA, Dubuc M, Nadeau R (1988) Effect of intravenous and oral calcium antagonists (diltiazem and verapamil) on sustenance of atrial fibrillation. Am J Cardiol 62:403–407

    Article  PubMed  CAS  Google Scholar 

  • Smith EE, Shore DF, Monro JL, Ross JK (1985) Oral verapamil fails to prevent supraventricular tachycardia following coronary artery surgery. Int J Cardiol 9:37–44

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84:5478–5482

    Article  PubMed  CAS  Google Scholar 

  • Tieleman RG, Van Gelder IC, Crijns HJ, De Kam PJ, Van Den Berg MP, Haaksma J, Van Der Woude HJ, Allessie MA (1998) Early recurrences of atrial fibrillation after electrical cardioversion: a result of fibrillation-induced electrical remodeling of the atria? J Am Coll Cardiol 31:167–173

    Article  PubMed  CAS  Google Scholar 

  • Van Gelder IC, Brundel BJ, Henning RH, Tuinenburg AE, Tieleman RG, Deelman L, Grandjean JG, De Kam PJ, Van Gilst WH, Crijns HJ (1999) Alterations in gene expression of proteins involved in the calcium handling in patients with atrial fibrillation. J Cardiovasc Electrophysiol 10:552–560

    Article  PubMed  Google Scholar 

  • Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, Nerbonne JM (1997) Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res 80:772–781

    PubMed  Google Scholar 

  • Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM (1999) Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res 85:428–436

    PubMed  Google Scholar 

  • Wang Z, Feng J, Shi H, Pond A, Nerbonne JM, Nattel S (1999) Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes. Circ Res 84:551–561

    PubMed  CAS  Google Scholar 

  • Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968

    PubMed  CAS  Google Scholar 

  • Workman AJ, Kane KA, Rankin AC (2001) The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res 52:226–235

    Article  PubMed  CAS  Google Scholar 

  • Xiao RP, Cheng H, Lederer WJ, Suzuki T, Lakatta EG (1994) Dual regulation of Ca2+/calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. Proc Natl Acad Sci USA 91:9659–9663

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi T, Ishii K, Taira N (1995) Antiarrhythmic and bradycardic drugs inhibit currents of Cloned K+ channels, KV1.2 and KV1.4. Eur J Pharmacol 281:151–159

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Hara M, Strobeck M, Fukasawa K, Schwartz A, Varadi G (1998) Multiple modulation pathways of calcium channel activity by a beta subunit. Direct evidence of beta subunit participation in membrane trafficking of the alpha1C subunit. J Biol Chem 273:19348–19356

    Article  PubMed  CAS  Google Scholar 

  • Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S (1997) Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 81:512–525

    PubMed  CAS  Google Scholar 

  • Yue L, Feng JL, Wang Z, Nattel S (2000) Effects of ambasilide, quinidine, flecainide and verapamil on ultra-rapid delayed rectifier potassium currents in canine atrial myocytes. Cardiovasc Res 46:151–161

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Sawanobori T, Hirano Y, Hiraoka M (1997) Multiple modulations of action potential duration by different calcium channel blocking agents in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 30:489–496

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zhou Z, Gong Q, Makielski JC, January CT (1999) Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 84:989–998

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Bundesministerium für Bildung und Forschung Germany (BMBF)/University of Tübingen (IZKF; No. 01KS9602) and the “Kompetenznetz Vorhofflimmern” (No. 01GI0204). The authors thank Jeannette Gogel for expert technical assistance and Hannelore Haase (Max-Dellbrück Zentrum Berlin, Germany) for supply of antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Laszlo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laszlo, R., Winkler, C., Wöhrl, S. et al. Effect of verapamil on tachycardia-induced early cellular electrical remodeling in rabbit atrium. Naunyn-Schmied Arch Pharmacol 376, 231–240 (2007). https://doi.org/10.1007/s00210-007-0188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0188-0

Keywords

Navigation