Skip to main content
Log in

q-variational Hörmander functional calculus and Schrödinger and wave maximal estimates

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

This article is the continuation of the work [30] where we had proved maximal estimates

$$\begin{aligned} \left\| \sup _{t > 0} |m(tA)f| \, \right\| _{L^p(\Omega ,Y)} \leqslant C \left\| f\right\| _{L^p(\Omega ,Y)} \end{aligned}$$

for sectorial operators A acting on \(L^p(\Omega ,Y)\) (Y being a UMD lattice) and admitting a Hörmander functional calculus (a strengthening of the holomorphic \(H^\infty \) calculus to symbols m differentiable on \((0,\infty )\) in a quantified manner), and \(m : (0, \infty ) \rightarrow \mathbb {C}\) being a Hörmander class symbol with certain decay at \(\infty \). In the present article, we show that under the same conditions as above, the scalar function \(t \mapsto m(tA)f(x,\omega )\) is of finite q-variation with \(q > 2\), a.e. \((x,\omega )\). This extends recent works by [13, 44,45,46, 52, 61] who have considered among others \(m(tA) = e^{-tA}\) the semigroup generated by \(-A\). As a consequence, we extend estimates for spherical means in euclidean space from [52] to the case of UMD lattice-valued spaces. A second main result yields a maximal estimate

$$\begin{aligned} \left\| \sup _{t > 0} |m(tA) f_t| \, \right\| _{L^p(\Omega ,Y)} \leqslant C \left\| f_t\right\| _{L^p(\Omega ,Y(\Lambda ^\beta ))} \end{aligned}$$

for the same A and similar conditions on m as above but with \(f_t\) depending itself on t such that \(t \mapsto f_t(x,\omega )\) belongs to a Sobolev space \(\Lambda ^\beta \) over \((\mathbb {R}_+, \frac{dt}{t})\). We apply this to show a maximal estimate of the Schrödinger (case \(A = -\Delta \)) or wave (case \(A = \sqrt{-\Delta }\)) solution propagator \(t \mapsto \exp (itA)f\). Then we deduce from it solutions to variants of Carleson’s problem of pointwise convergence [18]

$$\begin{aligned} \exp (itA)f(x,\omega ) \rightarrow f(x,\omega ) \text { a. e. }(x,\omega ) \quad (t \rightarrow 0+) \end{aligned}$$

for A a Fourier multiplier operator or a differential operator on an open domain \(\Omega \subseteq \mathbb {R}^d\) with boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This is not applicable since the article is in pure mathematics.

References

  1. Aldous, D.: Unconditional bases and martingales in \(L_p(F)\) Math. Proc. Cambridge Philos. Soc. 85(1), 117–123 (1979)

    Article  MathSciNet  Google Scholar 

  2. Alexopoulos, G.: Spectral multipliers on Lie groups of polynomial growth. Proc. Amer. Math. Soc. 120(3), 973–979 (1994)

    Article  MathSciNet  Google Scholar 

  3. Andrews, G., Askey, R., Roy, R.: Special functions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  4. Beceanu, M., Goldberg, M.: Strichartz estimates and maximal operators for the wave equation in \({\mathbb{R} }^3\). J. Funct. Anal. 266(3), 1476–1510 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (1976)

    Book  Google Scholar 

  6. Blunck, S.: A Hörmander type spectral multiplier theorem for operators without heat kernel. Ann. Scuo. Norm. Sup. Pisa 5(II), 449–459 (2003)

    Google Scholar 

  7. Bourdaud, G., Lanza de Cristoforis, M., Sickel, W.: Superposition operators and functions of bounded \(p\)-variation. Rev. Mat. Iberoam. 22(2), 455–487 (2006)

    Article  MathSciNet  Google Scholar 

  8. Bourgain, J.: Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 2, 163–168 (1983)

    Article  MathSciNet  Google Scholar 

  9. Bourgain, J.: Some new estimates on oscillatory integrals. Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991), 83–112, Princeton Math. Ser., 42, Princeton Univ. Press, Princeton, NJ, 1995

  10. Bourgain, J.: A remark on Schrödinger operators. Israel J. Math. 77(1–2), 1–16 (1992)

    Article  MathSciNet  Google Scholar 

  11. Bourgain, J.: On the Schrödinger maximal function in higher dimensions. Proc. Steklov Inst. Math. 280(1), 46–60 (2013)

    Article  MathSciNet  Google Scholar 

  12. Bourgain, J.: A note on the Schrödinger maximal function. J. Anal. Math. 130, 393–396 (2016)

    Article  MathSciNet  Google Scholar 

  13. Bourgain, J., Mirek, M., Stein, E.M., Wróbel, B.: On dimension-free variational inequalities for averaging operators in \({\mathbb{R} }^d\). Geom. Funct. Anal. 28(1), 58–99 (2018)

    Article  MathSciNet  Google Scholar 

  14. Burkholder, D.L.: A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional. Ann. Probab. 9(6), 997–1011 (1981)

    Article  MathSciNet  Google Scholar 

  15. Burkholder, D. L.: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), 270–286, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983

  16. Burkholder, D. L.: Martingales and singular integrals in Banach spaces. Handbook of the geometry of Banach spaces, Vol. I, 233–269, North-Holland, Amsterdam, 2001

  17. Carbery, A.: Radial Fourier multipliers and associated maximal functions. Recent progress in Fourier analysis (El Escorial, 1983), 49–56, North-Holland Math. Stud., 111, Notas Mat., 101, North-Holland, Amsterdam, 1985

  18. Carleson, L.: Some analytic problems related to statistical mechanics. Euclidean harmonic analysis. Proceedings of Seminars held at the University of Maryland, College Park, Md., 1979. Edited by John J. Benedetto. Lecture Notes in Mathematics, 779. Springer, Berlin, 1980. i+177 pp

  19. Chen, P., Duong, X.T., Yan, L.: \(L^p\)-bounds for Stein’s square functions associated to operators and applications to spectral multipliers. J. Math. Soc. Japan 65(2), 389–409 (2013)

    Article  MathSciNet  Google Scholar 

  20. Chen, P., Ouhabaz, E.M., Sikora, A., Yan, L.: Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner-Riesz means. J. Anal. Math. 129, 219–283 (2016)

    Article  MathSciNet  Google Scholar 

  21. Chen, P., Ouhabaz, E.M.: Weighted restriction type estimates for Grushin operators and application to spectral multipliers and Bochner-Riesz summability. Math. Z. 282(3–4), 663–678 (2016)

    Article  MathSciNet  Google Scholar 

  22. Cho, C.-H., Ko, H.: Pointwise convergence of the fractional Schrödinger equation in \({\mathbb{R} }^2\). Taiwanese J. Math. 26(1), 177–200 (2022)

    Article  MathSciNet  Google Scholar 

  23. Choi, W.: Maximal functions for multipliers on stratified groups. Math. Nachr. 288(10), 1098–1121 (2015)

    Article  MathSciNet  Google Scholar 

  24. Christ, M.: \(L^p\) bounds for spectral multipliers on nilpotent groups. Trans. Amer. Math. Soc. 328(1), 73–81 (1991)

    MathSciNet  Google Scholar 

  25. Christ, M., Grafakos, L., Honzík, P., Seeger, A.: Maximal functions associated with Fourier multipliers of Mikhlin-Hörmander type. Math. Z. 249(1), 223–240 (2005)

    Article  MathSciNet  Google Scholar 

  26. Dahlberg, B., Kenig, C.: A note on the almost everywhere behavior of solutions to the Schrödinger equation. Harmonic analysis (Minneapolis, Minn., 1981), pp. 205–209, Lecture Notes in Math., 908, Springer, Berlin-New York, 1982

  27. Dappa, H., Trebels, W.: On maximal functions generated by Fourier multipliers. Ark. Mat. 23(2), 241–259 (1985)

    Article  MathSciNet  Google Scholar 

  28. Deleaval, L., Kriegler, C.: Dimension free bounds for the vector-valued Hardy-Littlewood maximal operator. Rev. Mat. Iberoam. 35(1), 101–123 (2019)

    Article  MathSciNet  Google Scholar 

  29. Deleaval, L., Kemppainen, M., Kriegler, C.: Hörmander functional calculus on UMD lattice valued \(L^p\) spaces under generalised Gaussian estimates. J. Anal. Math. 145(1), 177–234 (2021)

    Article  MathSciNet  Google Scholar 

  30. Deleaval, L., Kriegler, C.: Maximal Hörmander Functional Calculus on \(L^p\) spaces and UMD lattices. Int. Math. Res. Not. IMRN 6, 4643–4694 (2023)

    Article  Google Scholar 

  31. Demeter, C., Guo, S.: Schrödinger maximal function estimates via the pseudoconformal transformation. Preprint on arxiv:1608.07640

  32. Du, X., Guth, L., Li, X.: A sharp Schrödinger maximal estimate in \({\mathbb{R} }^2\). Ann. Math. 186(2), 607–640 (2017)

    Article  MathSciNet  Google Scholar 

  33. Du, X., Zhang, R.: Sharp \(L^2\) estimates of the Schrödinger maximal function in higher dimensions. Ann. Math. 189(3), 837–861 (2019)

    Article  MathSciNet  Google Scholar 

  34. Du, X., Guth, L., Li, X., Zhang, R.: Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimates. Forum Math. Sigma 6 (2018), Paper No. e14, 18 pp

  35. Duong, X. T.: \(H_\infty \) functional calculus of second order elliptic partial differential operators on \(L^p\) spaces. Miniconference on Operators in Analysis (Sydney, 1989), 91–102, Proc. Centre Math. Anal. Austral. Nat. Univ., 24, Austral. Nat. Univ., Canberra, (1990)

  36. Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196(2), 443–485 (2002)

    Article  MathSciNet  Google Scholar 

  37. Duong, X.T., Sikora, A., Yan, L.: Weighted norm inequalities, Gaussian bounds and sharp spectral multipliers. J. Funct. Anal. 260(4), 1106–1131 (2011)

    Article  MathSciNet  Google Scholar 

  38. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics, 194. Springer-Verlag, New York. xxii+586 (2000)

  39. Fendler, G.: On dilations and transference for continuous one-parameter semigroups of positive contractions on \(L^p\)-spaces. Ann. Univ. Sarav. Ser. Math. 9(1), iv+97 (1998)

    MathSciNet  Google Scholar 

  40. Girardi, M., Weis, L.: Operator-valued Fourier multiplier theorems on \(L^p(X)\) and geometry of Banach spaces. J. Funct. Anal. 204(2), 320–354 (2003)

    Article  MathSciNet  Google Scholar 

  41. Grafakos, L.: Classical Fourier analysis. Third edition. Graduate Texts in Mathematics, 249. Springer, New York. xviii+638 (2014)

  42. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds. Math. USSR Sbornik 72(1), 47–77 (1992)

    Article  MathSciNet  Google Scholar 

  43. Grigor’yan, A., Telcs, A.: Two-sided estimates of heat kernels on metric measure spaces. Ann. Probab. 40(3), 1212–1284 (2012)

    Article  MathSciNet  Google Scholar 

  44. He, D., Hong, G., Liu, W.: Dimension-free estimates for the vector-valued variational operators. Forum Math. 32(2), 381–391 (2020)

    Article  MathSciNet  Google Scholar 

  45. Hong, G., Ma, T.: Vector valued q-variation for differential operators and semigroups I. Math. Z. 286(1–2), 89–120 (2017)

    Article  MathSciNet  Google Scholar 

  46. Hong, G., Ma, T.: Vector valued \(q\)-variation for ergodic averages and analytic semigroups. J. Math. Anal. Appl. 437(2), 1084–1100 (2016)

    Article  MathSciNet  Google Scholar 

  47. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  Google Scholar 

  48. Hytönen, T.: Reduced Mihlin-Lizorkin multiplier theorem in vector-valued \(L^p\) spaces. Partial differential equations and functional analysis, 137–151, Oper. Theory Adv. Appl., 168, Birkhäuser, Basel, (2006)

  49. Hytönen, T.: Anisotropic Fourier multipliers and singular integrals for vector-valued functions. Ann. Mat. Pura Appl. 186(3), 455–468 (2007)

    Article  MathSciNet  Google Scholar 

  50. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 63. Springer, Cham. xvi+614 (2016)

  51. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach spaces. Vol. II. Probabilistic methods and operator theory. Ergeb. Math. Grenzgeb. (3), 67 [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer, Cham. xxi+616 (2017)

  52. Jones, R.L., Seeger, A., Wright, J.: Strong variational and jump inequalities in harmonic analysis. Trans. Amer. Math. Soc. 360(12), 6711–6742 (2008)

    Article  MathSciNet  Google Scholar 

  53. Kenig, C.E., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40(1), 33–69 (1991)

    Article  MathSciNet  Google Scholar 

  54. Kriegler, C.: Spectral multipliers, \(R\)-bounded homomorphisms and analytic diffusion semigroups. PhD thesis, available online at https://hal.archives-ouvertes.fr/tel-00461310v1

  55. Kriegler, C., Weis, L.: Paley-Littlewood decomposition for sectorial operators and interpolation spaces. Math. Nachr. 289(11–12), 1488–1525 (2016)

    Article  MathSciNet  Google Scholar 

  56. Kriegler, C., Weis, L.: Spectral multiplier theorems via \(H^\infty \) calculus and \(R\)-bounds. Math. Z. 289(1–2), 405–444 (2018)

    Article  MathSciNet  Google Scholar 

  57. Kunstmann, P., Uhl, M.: Spectral multiplier theorems of Hörmander type on Hardy and Lebesgue spaces. J. Operator Theory 73(1), 27–69 (2015)

    Article  MathSciNet  Google Scholar 

  58. Kunstmann, P., Uhl, M.: \(L^p\)-spectral multipliers for some elliptic systems. Proc. Edinb. Math. Soc. 58(1), 231–253 (2015)

    Article  MathSciNet  Google Scholar 

  59. Kunstmann, P., Weis, L.: Maximal \(L_p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus. Functional analytic methods for evolution equations, 65–311, Lecture Notes in Math., 1855 (2004) Springer, Berlin

  60. Lee, S.: On pointwise convergence of the solutions to Schrödinger equations in \({\mathbb{R}}^2\). Int. Math. Res. Not. 32597, 21 (2006)

  61. Le Merdy, C., Xu, Q.: Strong \(q\)-variation inequalities for analytic semigroups. Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2069–2097 (2013)

  62. Li, P., Yau, Sh.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  63. Li, W., Wang, H.: A study on a class of generalized Schrödinger operators. J. Funct. Anal. 281, 38 (2021)

    Article  Google Scholar 

  64. Lindemulder, N.: Parabolic Initial-Boundary Value Problems with Inhomogeneous Data A Maximal Weighted \(L^q-L^p\)-Regularity Approach. Master thesis, Utrecht University

  65. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. II. Function spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Vol. 97. Springer-Verlag, Berlin-New York, 1979. x+243 pp

  66. Loomis, L.: An introduction to abstract harmonic analysis. D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. x+190 pp

  67. Lucà, R., Rogers, K.: Coherence on fractals versus pointwise convergence for the Schrödinger equation. Comm. Math. Phys. 351(1), 341–359 (2017)

    Article  MathSciNet  Google Scholar 

  68. Maurey, B.: Type et cotype dans les espaces munis de structures locales inconditionnelles. Séminaire Maurey-Schwartz (1973/74), 24-25 (1974), École Polytechnique, Paris

  69. Miao, C., Yang, J., Zheng, J.: An improved maximal inequality for 2D fractional order Schrödinger operators. Studia Math. 230(2), 121–165 (2015)

    MathSciNet  Google Scholar 

  70. Mihlin, S.: On the multipliers of Fourier integrals. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 109, 701–703 (1956)

  71. Moyua, A., Vargas, A., Vega, L.: Schrödinger maximal function and restriction properties of the Fourier transform. Internat. Math. Res. Notices 16, 793–815 (1996)

    Article  Google Scholar 

  72. Moyua, A., Vargas, A., Vega, L.: Restriction theorems and maximal operators related to oscillatory integrals in \({\mathbb{R} }^3\). Duke Math. J. 96(3), 547–574 (1999)

    Article  MathSciNet  Google Scholar 

  73. Ouhabaz, E.-M.: Analysis of heat equations on domains. London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ (2005)

    Google Scholar 

  74. Ouhabaz, E.-M.: Sharp Gaussian bounds and \(L^p\)-growth of semigroups associated with elliptic and Schrödinger operators. Proc. Amer. Math. Soc. 134(12), 3567–3575 (2006)

    Article  MathSciNet  Google Scholar 

  75. Peetre, J.: New thoughts on Besov spaces. Duke University Mathematics Series, No. 1. Mathematics Department, Duke University, Durham, N.C., (1976)

  76. Rogers, K.: Strichartz estimates via the Schrödinger maximal operator. Math. Ann. 343(3), 603–622 (2009)

    Article  MathSciNet  Google Scholar 

  77. Rogers, K., Villarroya, P.: Global estimates for the Schrödinger maximal operator. Ann. Acad. Sci. Fenn. Math. 32(2), 425–435 (2007)

    MathSciNet  Google Scholar 

  78. Rogers, K., Villarroya, P.: Sharp estimates for maximal operators associated to the wave equation. Ark. Mat. 46(1), 143–151 (2008)

    Article  MathSciNet  Google Scholar 

  79. Rubio de Francia, J. L.: Martingale and integral transforms of Banach space valued functions. Probability and Banach spaces (Zaragoza, 1985), 195–222, Lecture Notes in Math., 1221, Springer, Berlin, (1986)

  80. Rubio de Francia, J.L.: Maximal functions and Fourier transforms. Duke Math. J. 53(2), 395–404 (1986)

    Article  MathSciNet  Google Scholar 

  81. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Not. (1992), no. 2

  82. Schoenberg, I.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942)

    Article  MathSciNet  Google Scholar 

  83. Seeger, A.: On quasiradial Fourier multipliers and their maximal functions. J. Reine Angew. Math. 370, 61–73 (1986)

    MathSciNet  Google Scholar 

  84. Sikora, A., Yan, L., Yao, X.: Sharp spectral multipliers for operators satisfying generalized Gaussian estimates. J. Funct. Anal. 266(1), 368–409 (2014)

    Article  MathSciNet  Google Scholar 

  85. Sjölin, P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55(3), 699–715 (1987)

    Article  MathSciNet  Google Scholar 

  86. Sjölin, P.: Two theorems on convergence of Schrödinger means. J. Fourier Anal. Appl. 25(4), 1708–1716 (2019)

    Article  MathSciNet  Google Scholar 

  87. Sjölin, P., Strömberg, J.-O.: Convergence of sequences of Schrödinger means. J. Math. Anal. Appl. 483, 23 (2020)

    Article  Google Scholar 

  88. Sjölin, P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55(3), 699–715 (1987)

    Article  MathSciNet  Google Scholar 

  89. Sjölin, P.: Global maximal estimates for solutions to the Schrödinger equation. Studia Math. 110(2), 105–114 (1994)

    Article  MathSciNet  Google Scholar 

  90. Tao, T.: A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal. 13(6), 1359–1384 (2003)

    Article  MathSciNet  Google Scholar 

  91. Tao, T., Vargas, A.: A bilinear approach to cone multipliers II. Applications. Geom. Funct. Anal. 10(1), 216–258 (2000)

    Article  MathSciNet  Google Scholar 

  92. Tao, T., Vargas, A., Vega, L.: A bilinear approach to the restriction and Kakeya conjectures. J. Amer. Math. Soc. 11(4), 967–1000 (1998)

    Article  MathSciNet  Google Scholar 

  93. Tomczak-Jaegermann, N.: Banach-Mazur distances and finite-dimensional operator ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, 38. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. xii+395 pp

  94. Triebel, H.: Theory of function spaces. Monographs in Mathematics, 78. Birkhäuser Verlag, Basel, 1983. 284 pp

  95. Vega, L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Amer. Math. Soc. 102(4), 874–878 (1988)

    MathSciNet  Google Scholar 

  96. Zhang, Ch.: Pointwise convergence of solutions to Schrödinger type equations. Nonlinear Anal. 109, 180–186 (2014)

    Article  MathSciNet  Google Scholar 

  97. Zheng, J.: On pointwise convergence for Schrödinger operator in a convex domain. J. Fourier Anal. Appl. 25(4), 2021–2036 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support through the research program ANR-18-CE40-0021 (project HASCON). They also respectively acknowledge financial support through the research program ANR-18-CE40-0035 (project REPKA) and ANR-17-CE40-0021 (project FRONT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kriegler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deleaval, L., Kriegler, C. q-variational Hörmander functional calculus and Schrödinger and wave maximal estimates. Math. Z. 307, 25 (2024). https://doi.org/10.1007/s00209-024-03488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-024-03488-7

Keywords

Mathematics Subject Classification

Navigation