Skip to main content
Log in

Wavefront sets and descent method for finite unitary groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let G be a connected reductive algebraic group defined over a finite field \(\mathbb {F}_q\), and let \(\mathfrak {g}\) be the Lie algebra of G. In the 1980s, Kawanaka introduced the generalized Gelfand-Graev representations (GGGRs for short) of the finite group \(G^F\) in the case where q is a power of a good prime for \(G^F\), and defined (Kawanaka) wavefront sets of the irreducible representations \(\pi \) of \(G^F\) by GGGRs. In Lusztig [(Adv Math 94(2):139–179, 1992), Theorem 11.2], Lusztig showed that if a nilpotent element \(X\in \mathfrak {g}^F\) is “large” for an irreducible representation \(\pi \), then the representation \(\pi \) appears with “small” multiplicity in the GGGR associated to X. In this paper, we prove that for unitary groups, if X is the wavefront of \(\pi \), the multiplicity equals one, which generalizes the multiplicity one result of usual Gelfand-Graev representations. Moreover, we give an algorithm to decompose GGGRs for \(\textrm{U}_n(\mathbb {F}_q)\) and calculate the \(\textrm{U}_4(\mathbb {F}_q)\) case by this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achar, P.N., Aubert, A.-M.: Supports unipotents de faisceaux caractéres (French, with English and French summaries). J. Inst. Math. Jussieu 6(2), 173–207 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Aubert, A.-M., Kraśkiewicz, W., Przebinda, T.: Howe correspondence and Springer correspondence for dual pairs over a finite field. Lie algebras, Lie superalgebras, vertex algebras and related topics, Proc. Sympos. Pure Math., 92, Amer. Math. Soc., Providence, RI, 17–44 (2016)

  3. Adams, J., Moy, A.: Unipotent representations and reductive dual pairs over finite fields. Trans. Am. Math. Soc. 340, 309–321 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Aizenbud, A., Gourevitch, D., Rallis, S., Schiffmann, G.: Multiplicity one theorems. Ann. Math. (2) 172(2), 1407–1434 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Aubert, A.-M., Michel, J., Rouquier, R.: Correspondance de Howe pour les groupes reductifs sur les corps finis. Duke Math. J. 83(2), 353–397 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Andrews, S., Thiem, N.: The combinatorics of GLn generalized Gelfand-Graev characters. J. Lond. Math. Soc. (2) 95(2), 475–499 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Barbasch, D., Moy, A.: Local character expansions Ann. Sci. École Norm. Sup. (4) 30(5), 553–567 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Barbasch, D., Ma, J.-J., Sun, B.-Y., Zhu, C.-B.: Special unipotent representations : orthogonal and symplectic groups, arXiv:1712.05552

  9. Barbasch, D., Ma, J.-J., Sun, B.-Y., Zhu, C.-B.: On the notion of metaplectic Barbasch-Vogan duality, arXiv:2010.16089

  10. Carter, R.: Finite Groups of Lie Type, Conjugacy Classes and Complex Characters, John Wiley & Sons, England, (1985)

  11. Collingwood, D. H., McGovern, W. M.: Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Mathematics Series (1992)

  12. DeBacker, S.: Homogeneity results for invariant distributions of a reductive p-adic group. Ann. Sci. École Norm. Sup. (4) 35(3), 391–422 (2002)

    MathSciNet  MATH  Google Scholar 

  13. DeBacker, S.: Parametrizing nilpotent orbits via Bruhat-Tits theory. Ann. Math. (2) 156(1), 295–332 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. of Math. 103, 103–161 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Digne, F., Michel, J.: Representations of finite groups of Lie type, London Mathematical Society Student Texts (Book 21). Cambridge University Press, (1991)

  16. Geck, M.: On the average values of the irreducible characters of finite groups of Lie type on geometric unipotent classes. Doc. Math. 1(15), 293–317 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Geck, M.: Generalised Gelfand-Graev representations in bad characteristic? Transform. Groups 26(1), 305–326 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Gan, W. T., Benedict, Gross, H., Prasad, D.: Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups, Astérisque. No. 346, 1–109 (2012)

  19. Gan, W. T., Benedict, Gross, H., Prasad, D.: Restrictions of representations of classical groups: examples, Astérisque. No.346, 111–170 (2012)

  20. Ginzburg, D.: Certain conjectures relating unipotent orbits to automorphic representations. Israel J. Math. 151, 323–355 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Gérardin, P.: Weil representations associated to finite fields. J. Algebra 46, 54–101 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Geck, M., Malle, G.: On the existence of a unipotent support for the irreducible characters of a finite group of Lie type. Trans. Amer. Math. Soc. 352(1), 429–456 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Ginzburg, D., Rallis, S., Soudry, D.: On Fourier coefficients of automorphic forms of symplectic groups. manuscripta math. 111, 1–16 (2003)

  24. Ginzburg, D., Rallis, S., Soudry, D.: The descent map from automorphic representations of \({\rm GL }_n\) to classical groups, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2011)

    Google Scholar 

  25. Gross, B., Prasad, D.: On the decomposition of a representation of \({{\rm SO}}_n\) when restricted to \({{\rm SO}}_{n-1}\). Canad. J. Math. 44, 974–1002 (1992)

    MathSciNet  MATH  Google Scholar 

  26. Gross, B., Prasad, D.: On irreducible representations of \({{\rm SO}}_{2n+1}\times {{\rm SO}}_{2m}\). Canad. J. Math. 46, 930–950 (1994)

    MathSciNet  Google Scholar 

  27. Gomez, R., Zhu, C.: Local theta lifting of generalized Whittaker models associated to nilpotent orbits. Geom. Funct. Anal. 24(3), 796–853 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Howe, R. E.: Two conjectures about reductive p-adic groups, pp. 377-380 in Harmonic analysis on homogeneous spaces (Williamstown, MA, 1972), edited by C. C. Moore, Proc. Sympos. Pure Math. 26, Amer. Math. Soc., Providence, RI, (1973)

  29. Howe, R. E.: Wave front sets of representations of Lie groups, Automorphic forms, representation theory and arithmetic (Bombay, 1979), pp. 117-140, Tata Inst. Fund. Res. Studies in Math., 10, Tata Institute of Fundamental Research, Bombay, (1981)

  30. Harish-Chandra: Admissible invariant distributions on reductive p-adic groups, University Lecture Series 16, Amer. Math. Soc., Providence, RI, (1999)

  31. Jiang, D., Liu, D., Zhang, L.: Arithmetic wavefront sets and generic L-packets, arXiv:2207.04700 (2022). Search.

  32. Jiang, D., Zhang, L.: Local root numbers and spectrum of the local descents for orthogonal groups: \(p\)-adic case. Algebra Number Theory 12(6), 1489–1535 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Jiang, D., Zhang, L.: Arthur parameters and cuspidal automorphic modules of classical groups. Ann. of Math. (2) 191(3), 739–827 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Kawanaka, N.: Fourier transforms of nilpotently supported invariant functions on a finite simple Lie algebra. Proc. Japan Acad. Ser. A Math. Sci. 57, 461–464 (1981)

    MathSciNet  MATH  Google Scholar 

  35. N. Kawanaka, Generalized Gelfand-Graev representations and Ennola duality, in Algebraic Groups and Related Topics (Kyoto/Nagoya: Adv. Stud. Pure Math. 6. North-Holland, Amsterdam 1985, 175–206 (1983)

    Google Scholar 

  36. Kawanaka, N.: Shintani lifting and Gel’fand-Graev representations, In The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., 47 Amer. Math. Soc., Providence, RI, 47–163 (1987)

  37. Lusztig, G.: Irreducible representations of finite classical groups. Invent. Math. 43, 125–175 (1977)

    MathSciNet  MATH  Google Scholar 

  38. Lusztig, G.: Some problems in the representation theory of finite Chevalley groups, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, CA, 1979), Proc. Sympos. Pure Math. 37, American Mathematical Society, Providence, RI, 313–317 (1980)

  39. Lusztig, G.: Unipotent characters of the symplectic and odd orthogonal groups over a finite field. Invent. Math. 64, 263–296 (1981)

    MathSciNet  MATH  Google Scholar 

  40. Lusztig, G.: Unipotent characters of the even orthogonal groups over a finite field. Trans. Amer. Math. Soc. 272, 733–751 (1982)

    MathSciNet  MATH  Google Scholar 

  41. Lusztig, G.: Characters of reductive groups over a finite field. Princeton Univ. Press, Princeton, N.J. (1984)

    MATH  Google Scholar 

  42. Lusztig, G.: On the representations of reductive groups with disconnected centre, in: Orbites unipotentes et représentations I. Groupes finis et algèbres de Hecke, Astérisque 168, Société Mathématique de France, Paris, 157-166 (1988)

  43. Lusztig, G.: A unipotent support for irreducible representations. Adv. Math. 94(2), 139–179 (1992)

    MathSciNet  MATH  Google Scholar 

  44. Loke, H.Y., Ma, J.: Invariants and K-spectrums of local theta lifts. Compos. Math. 151(1), 179–206 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Lusztig, G., Srinivasan, B.: The characters of the finite unitary groups. J. Algebra 49, 167–171 (1977)

    MathSciNet  MATH  Google Scholar 

  46. Liu, D., Wang, Z.: Descents of unipotent representations of finite unitary groups. Trans. Amer. Math. Soc. 373(6), 4223–4253 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Liu, D., Wang, Z.: Descents of unipotent cuspidal representations of finite classical groups. Manuscripta Math. 165(1–2), 159–189 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Liu, D., Wang, Z.: On the Gan-Gross-Prasad problem for finite unitary groups. Math. Z. 297(3–4), 997–1021 (2021)

    MathSciNet  MATH  Google Scholar 

  49. Liu, B., Zhang, Q.: Uniqueness of certain Fourier-Jacobi models over finite fields. Finite Fields Appl. 58, 70–123 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Mœglin, C.: Front d’onde des représentations des groupes classiques p-adiques, (French) Amer. J. Math. 118(6), 1313–1346 (1996)

    MathSciNet  MATH  Google Scholar 

  51. Mœglin, C., Waldspurger, J.-L.: Modèles de Whittaker dégénérés pour des groupes p-adiques. Math. Z. 196, 427–452 (1987)

    MathSciNet  MATH  Google Scholar 

  52. Mœglin, C., Vignéras, M.-F., Waldspurger, J.-L.: Correspondances de Howe sur un corps \(p\)-adique, Springer Verlag. Lecture Notes in Math, vol. 1291. Berlin, Heidelberg (1987)

  53. Ma, J., Qiu, C., Zou, J.: Generic Hecke algebra and theta correspondence over finite fields, arXiv:2208.00431

  54. Nien, C.: A proof of the finite field analogue of Jacquet’s conjecture. Amer. J. Math. 136, 653–674 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Novodvorskiǐ, M. E., Pjateckiǐ-Šapiro, I.: Generalized Bessel models for the symplectic group of rank 2, (Russian) Mat. Sb. (N.S.) 90(132), 246–256, 326 (1973)

  56. Okada, E. T.: The wavefront set of spherical Arthur representations, arXiv:2107.10591

  57. Pan, S.-Y.: Howe correspondence of unipotent characters for a finite symplectic/even-orthogonal dual pair, arXiv:1901.00623 (2019)

  58. Pan, S.-Y.: Lusztig Correspondence and Howe Correspondence for Finite Reductive Dual Pairs, arXiv:1906.01158 (2019)

  59. Pan, S.-Y.: Howe correspondence of unipotent characters for a finite symplectic/even-orthogonal dual pair, arXiv:1901.00623 (2019)

  60. Peng, Z., Wang, Z.: Wavefront sets and descent method for finite symplectic groups, arXiv:2210.06263 (2022)

  61. Rainbolt, J.G.: The generalized Gelfand-Graev representations of \({\rm U }(3, q)\). J. Algebra 202(1), 44–71 (1998)

    MathSciNet  MATH  Google Scholar 

  62. Roditty, E-A.: On Gamma factors and Bessel functions for representations of general linear groups over finite fields, M.s.c. Thesis, Tel-Aviv University

  63. Shoji, T.: On the computation of unipotent characters of finite classical groups. Appl. Algebra Engrg. Comm. Comput. 7(3), 165–174 (1996)

    MathSciNet  MATH  Google Scholar 

  64. Shalika, J.: The multiplicity one theorem for \({\rm GL }_n\). Ann. Math. 100, 171–193 (1974)

    MathSciNet  Google Scholar 

  65. Srinivasan, B.: Weil representations of finite classical groups. Invent. Math. 51, 143–153 (1979)

    MathSciNet  MATH  Google Scholar 

  66. Taylor, J.: Generalized Gelfand-Graev representations in small characteristics. Nagoya Math. J. 224, 93–167 (2016)

    MathSciNet  MATH  Google Scholar 

  67. Thiem, N., Vinroot, C.R.: Gelfand-Graev characters of the finite unitary groups, Electron. J. Combin. 16, 37, no. 1, Research Paper 146 (2009)

  68. Waldspurger, J.-L.: Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque No. 269 (2001), vi+449 pp

  69. Waldspurger, J.-L.: Représentations de réduction unipotente pour \({\rm SO }(2n + 1)\), III: exemples de fronts dónde. Algebra Number Theory No. 12(5), 1107–1171 (2018)

    MathSciNet  MATH  Google Scholar 

  70. Waldspurger, J.-L.: Fronts dónde des représentations tempérées et de réduction unipotente pour \({\rm SO }(2n + 1)\). Tunis. J. Math 2(1), 43–95 (2020)

    MathSciNet  MATH  Google Scholar 

  71. Wang, Z.: On the Gan-Gross-Prasad problem for finite classical groups, Adv. Math. 393, Paper No. 108095, 72 pp (2021)

  72. Wang, Z.: Lusztig correspondence and the Gan-Gross-Prasad problem, arXiv:2104.14473 (2021)

  73. Yamashita, H.: On Whittaker vectors for generalized Gel’fand-Graev representations of semisimple Lie groups. J. Math. Kyoto Univ. 26(2), 263–298 (1986)

    MathSciNet  MATH  Google Scholar 

  74. Zhu, C.-B.: Local theta correspondence and nilpotent invariants. Proc. Sympos. Pure Math. 101, 427–450 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge generous support provided by National Natural Science Foundation of PR China (Nos. 12071326 and 12201444), China Postdoctoral Science Foundation (Nos. 2021TQ0233, 2021M702399), and Jiangsu Funding Program for Excellent Postdoctoral Talent (No. 2022ZB283029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Wang, Z. Wavefront sets and descent method for finite unitary groups. Math. Z. 305, 65 (2023). https://doi.org/10.1007/s00209-023-03391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03391-7

Mathematics Subject Classification

Navigation