Skip to main content
Log in

On the degree of polynomial subgroup growth of nilpotent groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let N be a finitely generated nilpotent group. The subgroup zeta function \(\zeta _N^{\scriptscriptstyle \leqslant }(s)\) and the normal zeta function \(\zeta _N^{\scriptscriptstyle \lhd }(s)\) of N are Dirichlet series enumerating the finite index subgroups or the finite index normal subgroups of N. We present results about their abscissae of convergence \(\alpha _N^{\scriptscriptstyle \leqslant }\) and \(\alpha _N^{\scriptscriptstyle \lhd }\), also known as the degrees of polynomial subgroup growth and polynomial normal subgroup growth of N, respectively. We first prove some upper bounds for the functions \(N\mapsto \alpha _N^{\scriptscriptstyle \leqslant }\) and \(N\mapsto \alpha _N^{\scriptscriptstyle \lhd }\) when restricted to the class of torsion-free nilpotent groups of a fixed Hirsch length. We then show that if two finitely generated nilpotent groups have isomorphic \(\mathbb {C}\)-Mal’cev completions, then their subgroup (resp. normal) zeta functions have the same abscissa of convergence. This follows, via the Mal’cev correspondence, from a similar result that we establish for zeta functions of rings. This result is obtained by proving that the abscissa of convergence of an Euler product of certain Igusa-type local zeta functions introduced by du Sautoy and Grunewald remains invariant under base change. We also apply this methodology to formulate and prove a version of our result about nilpotent groups for virtually nilpotent groups. As a side application of our result about zeta functions of rings, we present a result concerning the distribution of orders in number fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avni, N., Klopsch, B., Onn, U., Voll, C.: Representation zeta functions of compact \(p\)-adic analytic groups and arithmetic groups. Duke Math. J. 1, 111–197 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Avni, N., Klopsch, B., Onn, U., Voll, C.: Arithmetic groups, base change, and representation growth. Geom. Funt. Anal. 26, 67–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bass, H.: The degree of polynomial growth of finitely generated nilpotent groups. Proc. Lond. Math. Soc. 25, 603–614 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carnevale, A., Schein, M. M., Voll, C.: Generalized Igusa functions and ideal growth in nilpotent Lie rings. In: Proceedings of the 32nd International Conference on “Formal Power Series and Algebraic Combinatorics", 84 (2020)

  5. Denef, J.: The rationality of the Poincaré series associated to the \(p\)-adic points on a variety. Invent. Math. 77, 1–23 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Denef, J.: On the degree of Igusa’s local zeta function. Am. J. Math. 109(6), 991–1008 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dung, D., Voll, C.: Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups. Trans. Am. Math. Soc. 369, 6327–6349 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. du Sautoy, M., Grunewald, F.: Analytic properties of zeta functions and subgroup growth. Ann. Math. 152, 793–833 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. du Sautoy, M., Grunewald, F.: Zeta functions of groups and rings. In International Congress of Mathematicians, vol. II, p. 131–149. European Mathematical Society, Zürich (2006)

  10. du Sautoy, M., Woodward, L.: Zeta functions of groups and rings. Lecture Notes in Mathematics, vol. 1925. Springer, Berlin (2008)

  11. du Sautoy, M., McDermott, J., Smith, G.: Zeta functions of crystallographic groups and meromorphic continuation. Proc. Lond. Math. Soc. 79(3), 511–534 (1999)

    Article  MATH  Google Scholar 

  12. Grunewald, F., Segal, D., Smith, G.: Subgroups of finite index in nilpotent groups. Invent. Math. 93, 185–223 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaplan, N., Marcinek, J., Takloo-Bighash, R.: Distribution of orders in number fields. Res. Math. Sci 2(6) (2015)

  14. Klopsch, B., Voll, C.: Zeta function of 3-dimensional \(p\)-adic Lie algebras. Math. Z. 263(1), 195–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lauret, J.: Rational forms of nilpotent Lie algebras and Anosov diffeomorphisms. Monatsh. Math. 155, 15–30 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, S., Voll, C.: Zeta functions of integral nilpotent quiver representations. Int. Math. Res. Notes, rnab45 (2021)

  17. Lubotzky, A., Nikolov, N.: Subgroup growth of lattices in semisimple Lie groups. Acta. Math. 193, 105–139 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lubotzky, A., Segal, D.: Subgroup Growth. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  19. Lubotzky, A., Mann, A., Segal, D.: Finitely generated groups of polynomial subgroup growth. Israel J. Math. 82, 363–371 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meuser, D.: The meromorphic continuation of a zeta function of Weil and Igusa Type. Invent. Math. 85(3), 493–514 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Paajanen, P.: On the degree of polynomial subgroup growth in class 2 nilpotent groups. Israel J. Math. 157(1), 323–332 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rossmann, T.: Enumerating submodules invariant under an endomorphism. Math. Ann. 368, 391–417 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rossmann, T.: Computing local zeta functions of groups, algebras, and modules. Trans. Am. Math. Soc. 370(7), 4841–4879 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rossmann, T.: Zeta, version 0.4.2 (2022). https://torossmann.github.io/Zeta/

  25. Schein, M.M., Voll, C.: Normal zeta functions of the Heisenberg groups over number rings I: the unramified case. J. Lond. Math. Soc. 91(1), 19–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schein, M.M., Voll, C.: Normal zeta functions of the Heisenberg groups over number rings II: the non-split case. Israel J. Math. 211(1), 171–195 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shalev, A.: On the degree of groups of polynomial subgroup growth. Trans. Am. Math. Soc. 351(9), 3793–3822 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Snocken, R.: Zeta functions of groups and rings. PhD thesis. University of Southampton. (2012). https://eprints.soton.ac.uk/372833/

  29. Stanley. R.: Combinatorics and commutative algebra, 2nd edition. In: Progress in Math., vol. 41. Birkäuser Boston, Boston (1996)

  30. Sulca, D.: Zeta functions of virtually nilpotent groups. Israel J. Math. 213(1), 371–398 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Taylor, G.: Zeta Functions of Algebras and Resolution of Singularities. PhD thesis, University of Cambridge (2001)

  32. Voll, C.: Normal subgroup growth in free class-2-nilpotent groups. Math. Ann. 332(1), 67–79 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Voll, C.: Zeta functions of groups and rings: recent developments. In Groups St. Andrews 2013, London Math. Soc., Lecture Notes Series 422. Cambridge University Press (2015)

  34. Warfield, R., Jr.: Nilpotent groups. Lecture Notes in Mathematics, vol. 513. Springer-Verlag, Berlin-Heidelberg-New York (1976)

Download references

Acknowledgements

This work was supported by CONICET (Argentina). Theorem B is part of my Ph.D. thesis. I would like to thank my supervisors Paulo Tirao and Karel Dekimpe for their guidance and encouragement. I would also like to thank Marcos Origlia for a careful reading of a previous draft of the paper and useful remarks. Finally, I am especially grateful with the two referees, whose comments led to a significant improvement in the presentation and the content of the paper. For instance, the inclusion of Corollary D and its subsequent application Theorem E was suggested by them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sulca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulca, D. On the degree of polynomial subgroup growth of nilpotent groups. Math. Z. 303, 8 (2023). https://doi.org/10.1007/s00209-022-03156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03156-8

Keywords

Mathematics Subject Classification

Navigation