Skip to main content
Log in

A refinement of Christol’s theorem for algebraic power series

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A famous result of Christol gives that a power series \(F(t)=\sum _{n\ge 0} f(n)t^n\) with coefficients in a finite field \(\mathbb {F}_q\) of characteristic p is algebraic over the field of rational functions in t if and only if there is a finite-state automaton accepting the base-p digits of n as input and giving f(n) as output for every \(n\ge 0\). An extension of Christol’s theorem, giving a complete description of the algebraic closure of \(\mathbb {F}_q(t)\), was later given by Kedlaya. When one looks at the support of an algebraic power series, that is the set of n for which \(f(n)\ne 0\), a well-known dichotomy for sets generated by finite-state automata shows that the support set is either sparse—with the number of \(n\le x\) for which \(f(n)\ne 0\) bounded by a polynomial in \(\log (x)\)—or it is reasonably large in the sense that the number of \(n\le x\) with \(f(n)\ne 0\) grows faster than \(x^{\alpha }\) for some positive \(\alpha \). The collection of algebraic power series with sparse supports forms a ring and we give a purely algebraic characterization of this ring in terms of Artin–Schreier extensions and we extend this to the context of Kedlaya’s work on generalized power series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allouche, J.-P., Shallit, J.: Automatic Sequences. Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  2. Alon, N.: Combinatorial Nullstellensatz. Recent trends in combinatorics (Mátraháza, 1995). Combin. Probab. Comput. 8(1–2), 7–29 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bell, J.P., Ghioca, D., Tucker, T.J.: The Dynamical Mordell–Lang Conjecture. Mathematical Surveys and Monographs, p. 210. American Mathematical Society, Providence (2016)

    Book  Google Scholar 

  4. Bell, J.P., Hare, K., Shallit, J.: When is an automatic set an additive basis? Proc. Am. Math. Soc. Ser. B 5, 50–63 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bell, J.P., Moosa, R.: \(F\)-sets and finite automata. J. Théor. Nombres Bordeaux 31(1), 101–130 (2019)

    Article  MathSciNet  Google Scholar 

  6. Byszewski, J., Cornelissen, G., Tijsma, D.: Automata and finite order elements in the Nottingham group. Available online at arXiv:2008.04971

  7. Christol, G.: Ensembles presque periodiques k-reconnaissables. Theor. Comput. Sci. 9, 141–145 (1979)

    Article  MathSciNet  Google Scholar 

  8. Christol, G., Kamae, T., Mendès France, M., Rauzy, G.: Suites algébriques, automates et substitutions. Bull. Soc. Math. France 108, 401–419 (1980)

    Article  MathSciNet  Google Scholar 

  9. Derksen, H.: A Skolem–Mahler–Lech theorem in positive characteristic and finite automata. Invent. Math. 168(1), 175–224 (2007)

    Article  MathSciNet  Google Scholar 

  10. Gawrychowski, P., Krieger, D., Rampersad, N., Shallit, J.: Finding the growth rate of a regular or context-free language in polynomial time. Int. J. Found. Comput. Sci. 21, 597–618 (2010)

    Article  MathSciNet  Google Scholar 

  11. Ghioca, D.: The isotrivial case in the Mordell–Lang theorem. Trans. Am. Math. Soc. 360(7), 3839–3856 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ginsburg, S., Spanier, E.: Bounded regular sets. Proc. Am. Math. Soc. 17, 1043–1049 (1966)

    Article  MathSciNet  Google Scholar 

  13. Hahn, H.: Über die nichtarchimedischen Größensysteme (1907). Gesammelte Abhandlungen I. Springer (1995)

  14. Ibarra, O.H., Ravikumar, B.: On sparseness, ambiguity, and other decision problems for acceptors and transducers. In: STACS 86 (Orsay, 1986), Lecture Notes in Comput. Sci., vol. 210, pp. 171–179. Springer, Berlin (1986)

    Google Scholar 

  15. Kedlaya, K.S.: Finite automata and algebraic extensions of function fields. J. Théorie Nombres Bordeaux 18(2), 379–420 (2006)

    Article  MathSciNet  Google Scholar 

  16. Kedlaya, K.S.: On the algebraicity of generalized power series. Beitr. Algebra Geom. 58(3), 499–527 (2017)

    Article  MathSciNet  Google Scholar 

  17. Lang, S.: Algebra. Revised Third Edition. Graduate Texts in Mathematics, p. 211. Springer, New York (2002)

    Google Scholar 

  18. Moosa, R., Scanlon, T.: The Mordell–Lang conjecture in positive characteristic revisited. In: Model Theory and its Applications, Quad. Mat, vol. 11, pp. 273–296. Aracne, Rome (2002)

    Google Scholar 

  19. Moosa, R., Scanlon, T.: \(F\)-structures and integral points on semiabelian varieties over finite fields. Am. J. Math. 126(3), 473–522 (2004)

    Article  MathSciNet  Google Scholar 

  20. Salon, O.: Suites automatiques à multi-indices et algébricité. C. R. Acad. Sci. Paris Sér. I Math. 305(12), 501–504 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Salon, O.: Suites automatiques à multi-indices (with an appendix by. J. Shallit). Sem. Théorie Nombres Bordeaux 4, 1–27 (1986–1987)

  22. Serre, J.-P.: Local fields. In: Graduate Texts in Mathematics, p. 67. Springer, New York and Berlin (1979)

    Google Scholar 

  23. Sharif, H., Woodcock, C.F.: Algebraic functions over a field of positive characteristic and Hadamard products. J. Lond. Math. Soc. 37, 395–403 (1988)

    Article  MathSciNet  Google Scholar 

  24. Shallit, J., Szilard, A., Yu, S., Zhang, K.: Characterizing regular languages with polynomial densities. In: Mathematical Foundations of Computer Science 1992 (Prague, 1992), Lect. Notes in Comput. Sci., vol. 629, pp. 494–503. Springer, Berlin (1992)

    Google Scholar 

  25. Trofimov, V.I.: Growth functions of some classes of languages. (Russian). Kibernetika (Kiev) 6(i, 9–12), 149 (1981)

    Google Scholar 

  26. Zariski, O., Samuel, P.: Commutative Algebra. Vol. II. Reprint of 1960 edition. Graduate Texts in Mathematics, vol. 29. Springer, New York and Heidelberg (1975)

    Google Scholar 

Download references

Acknowledgements

We are indebted to Jakub Byszewski for correcting an earlier statement of Theorem 1.1 and suggesting a suitable reformulation. We also thank the referee for making numerous helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Bell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jason P. Bell was supported by a Discovery Grant from the National Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albayrak, S., Bell, J.P. A refinement of Christol’s theorem for algebraic power series. Math. Z. 300, 2265–2288 (2022). https://doi.org/10.1007/s00209-021-02868-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02868-7

Keywords

Mathematics Subject Classification

Navigation