Skip to main content
Log in

On scales of Sobolev spaces associated to generalized Hardy operators

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the fractional Laplacian with Hardy potential and compare the scale of homogeneous \(L^p\) Sobolev spaces generated by this operator with the ordinary homogeneous Sobolev spaces. The proof relies on a generalized Hardy inequality, a reversed Hardy inequality expressed in terms of square functions, and a Hörmander multiplier theorem which is proven for positive coupling constants. The latter is crucial to obtain Bernstein and square function estimates associated to this operator. The results extend those obtained recently in \(L^2\) but do not cover negative coupling constants in general due to the slow decay of the associated heat kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blumenthal, R.M., Getoor, R.K.: Some theorems on stable processes. Trans. Am. Math. Soc. 95, 263–273 (1960)

    Article  MathSciNet  Google Scholar 

  2. Blunck, S.: A Hörmander-type spectral multiplier theorem for operators without heat kernel. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2(3), 449–459 (2003)

  3. Bogdan, K., Grzywny, T., Jakubowski, T., Pilarczyk, D.: Fractional Laplacian with Hardy potential. Commun. Part. Differ. Equ. 44(1), 20–50 (2019)

    Article  MathSciNet  Google Scholar 

  4. Chen, P., Ouhabaz, E.M., Sikora, A., Yan, L.: Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner–Riesz means. J. Anal. Math. 129, 219–283 (2016)

    Article  MathSciNet  Google Scholar 

  5. Chen, P., Ouhabaz, E.M., Sikora, A., Yan, L.: Spectral multipliers without semigroup framework and application to random walks. J. Math. Pures Appl. 9(143), 162–191 (2020)

    Article  MathSciNet  Google Scholar 

  6. Cho, S., Kim, P., Song, R., Vondraček, Z.: Factorization and estimates of Dirichlet heat kernels for non-local operators with critical killings. J. Math. Pures Appl. 9(143), 208–256 (2020)

    Article  MathSciNet  Google Scholar 

  7. Coulhon, T., Sikora, A.: Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem. Proc. Lond. Math. Soc. (3) 96(2), 507–544 (2008). https://doi.org/10.1112/plms/pdm050

  8. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.21 of 2018-12-15. http://dlmf.nist.gov/. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds

  9. Duong, X.T., Ouhabaz, E.M., Sikora, A.: Spectral multipliers for self-adjoint operators. In: Geometric analysis and applications (Canberra, 2000), Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 39, pp. 56–66. Austral. Nat. Univ., Canberra (2001)

  10. Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196(2), 443–485 (2002)

    Article  MathSciNet  Google Scholar 

  11. Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21(4), 925–950 (2008)

    Article  Google Scholar 

  12. Frank, R.L., Merz, K., Siedentop, H.: Equivalence of Sobolev norms involving generalized Hardy operators. Int. Math. Res. Not. IMRN (2019). https://doi.org/10.1093/imrn/rnz135

  13. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255(12), 3407–3430 (2008). https://doi.org/10.1016/j.jfa.2008.05.015

  14. Hebisch, W.: Almost everywhere summability of eigenfunction expansions associated to elliptic operators. Studia Math. 96(3), 263–275 (1990). https://doi.org/10.4064/sm-96-3-263-275

  15. Hebisch, W.: A multiplier theorem for Schrödinger operators. Colloq. Math. 60/61(2), 659–664 (1990). https://doi.org/10.4064/cm-60-61-2-659-664

  16. Hebisch, W.: Functional calculus for slowly decaying kernels. preprint (1995). http://www.math.uni.wroc.pl/~hebisch/papers/rach02.dvi

  17. Herbst, I.W.: Spectral theory of the operator \((p^2+m^2)^{1/2} - Ze^2/r\). Comm. Math. Phys. 53, 285–294 (1977)

    Article  MathSciNet  Google Scholar 

  18. Hörmander, L.: Estimates for translation invariant operators in \(L^{p}\) spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  Google Scholar 

  19. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, 2nd edn. Springer-Verlag, Berlin (1990)

  20. Jakubowski, T., Wang, J.: Heat kernel estimates of fractional Schrödinger operators with negative Hardy potential. Potential Anal. 53(3), 997–1024 (2020)

    Article  MathSciNet  Google Scholar 

  21. Kato, T.: Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, vol. 132, 1st edn. Springer-Verlag, Berlin (1966)

  22. Killip, R., Miao, C., Visan, M., Zhang, J., Zheng, J.: The energy-critical NLS with inverse-square potential. Discrete Contin. Dyn. Syst. 37(7), 3831–3866 (2017)

    Article  MathSciNet  Google Scholar 

  23. Killip, R., Miao, C., Visan, M., Zhang, J., Zheng, J.: Sobolev spaces adapted to the Schrödinger operator with inverse-square potential. Math. Z. 288(3–4), 1273–1298 (2018)

    Article  MathSciNet  Google Scholar 

  24. Killip, R., Murphy, J., Visan, M., Zheng, J.: The focusing cubic NLS with inverse-square potential in three space dimensions. Differ Integ Equ 30(3–4), 161–206 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Killip, R., Visan, M., Zhang, X.: Riesz transforms outside a convex obstacle. Int. Math. Res. Not. IMRN 19, 5875–5921 (2016). https://doi.org/10.1093/imrn/rnv338

  26. Kovalenko, V.F., Perelmuter, M.A., Semenov, Y.A.: Schrödinger operators with \({L}_w^{l/2}({\mathbb{R}}^l)\)-potentials. J. Math. Phys. 22, 1033–1044 (1981)

    Article  MathSciNet  Google Scholar 

  27. Mihlin, S.G.: On the multipliers of Fourier integrals. Dokl. Akad. Nauk SSSR (N.S.) 109, 701–703 (1956)

  28. Milman, P.D., Semenov, Y.A.: Global heat kernel bounds via desingularizing weights. J. Funct. Anal. 212(2), 373–398 (2004). https://doi.org/10.1016/j.jfa.2003.12.008

  29. Olver, F.W.J.: Bessel functions of integer order. In: M. Abramowitz, I.A. Stegun (eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 5 edn., chap. 9, pp. 355–433. Dover Publications, New York (1968)

  30. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ (1970)

  31. Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood–Paley Theory. Annals of Mathematics Studies, No. 63. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1970)

  32. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, 2nd edn. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  33. Yafaev, D.: Sharp constants in the Hardy–Rellich inequalities. J. Funct. Anal. 168(1), 212–244 (1999)

    Article  MathSciNet  Google Scholar 

  34. Zo, F.: A note on approximation of the identity. Studia Math. 55(2), 111–122 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Merz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Konstantin Merz’s address as of October 2019: Institut für Analysis und Algebra, Carolo-Wilhelmina, Universitätsplatz 2, 38106 Braunschweig, Germany.

Deutsche Forschungsgemeinschaft Grant SI 348/15-1 is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merz, K. On scales of Sobolev spaces associated to generalized Hardy operators. Math. Z. 299, 101–121 (2021). https://doi.org/10.1007/s00209-020-02651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02651-0

Keywords

Mathematics Subject Classification

Navigation