Skip to main content
Log in

Generic representations of metaplectic groups and their theta lifts

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we give the description of generic representations of metaplectic groups over p-adic fields in terms of their Langlands parameters and calculate their theta lifts on all levels for any tower of odd orthogonal groups. We also describe precisely all the occurrences of the failure of the standard module conjecture for metaplectic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthur, J.: The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups. http://www.claymath.org/cw/arthur/pdf/Book.pdf

  2. Atobe, H.: On the uniqueness of generic representations in an L-packet. arXiv:1511.08897v2

  3. Atobe, H.: The local theta correspondence and the local Gan–Gross–Prasad conjecture for the symplectic–metaplectic case. Math. Ann. 371, 225–295 (2018)

    Article  MathSciNet  Google Scholar 

  4. Atobe, H., Gan, W.T.: Local theta correspondence of tempered representations and Langlands parameters. Invent. Math. 210, 341–415 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bakić, P.: Theta lifts of generic representations for dual pairs \(({{\rm Sp}}_{2n}, {{\rm O}} (V))\) (preprint)

  6. Banks, W.D.: A corollary to Bernstein’s theorem and Whittaker functionals on the metaplectic group. Math. Res. Lett. 5, 781–790 (1998)

    Article  MathSciNet  Google Scholar 

  7. Banks, W.D.: Heredity of Whittaker models on the metaplectic group. Pac. J. Math. 185, 89–96 (1998)

    Article  MathSciNet  Google Scholar 

  8. Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductive \(p\)-adic groups. I, Ann. Sci. École. Norm. Sup. (4) 10, 441–472 (1977)

    Article  MathSciNet  Google Scholar 

  9. Gan, W.T., Savin, G.: Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence. Compos. Math. 148, 1655–1694 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gan, W.T., Takeda, S.: A proof of the Howe duality conjecture. J. Am. Math. Soc. 29, 473–493 (2016)

    Article  MathSciNet  Google Scholar 

  11. Gelbart, S.S.: Weil’s Representation and the Spectrum of the Metaplectic Group. Lecture Notes in Mathematics, vol. 530. Springer, Berlin (1976)

    Book  Google Scholar 

  12. Hanzer, M.: The generalized injectivity conjecture for classical \(p\)-adic groups. Int. Math. Res. Not. IMRN 20, 195–237 (2010)

    Article  MathSciNet  Google Scholar 

  13. Hanzer, M.: R groups for metaplectic groups. Isr. J. Math. 231, 467–488 (2019)

    Article  MathSciNet  Google Scholar 

  14. Hanzer, M., Muić, G.: Parabolic induction and Jacquet functors for metaplectic groups. J. Algebra 323, 241–260 (2010)

    Article  MathSciNet  Google Scholar 

  15. Hanzer, M., Muić, G.: Rank one reducibility for metaplectic groups via theta correspondence. Can. J. Math. 63, 591–615 (2011)

    Article  MathSciNet  Google Scholar 

  16. Howe, R.: \(\theta \)-series and invariant theory. In: Automorphic Forms, Representations and \(L\)-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., pp. 275–285 (1979)

  17. Howe, R.: Transcending classical invariant theory. J. Am. Math. Soc. 2, 535–552 (1989)

    Article  MathSciNet  Google Scholar 

  18. Kudla, S.S.: On the local theta-correspondence. Invent. Math. 83, 229–255 (1986)

    Article  MathSciNet  Google Scholar 

  19. Kudla, S.S.: Notes on the local theta correspondence (1996)

  20. Kudla, S.S., Rallis, S.: On the Weil–Siegel formula. II. The isotropic convergent case. J. Reine Angew. Math. 391, 65–84 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Kudla, S.S., Rallis, S.: On First Occurrence in the Local Theta Correspondence, in Automorphic representations, \(L\)-functions and Applications: Progress and Prospects Ohio State University Publications of the Research Institute for Mathematical, pp. 273–308. de Gruyter, Berlin (2005)

    Google Scholar 

  22. Mœglin, C.: Sur la classification des séries discrètes des groupes classiques \(p\)-adiques: paramètres de Langlands et exhaustivité. J. Eur. Math. Soc. (JEMS) 4, 143–200 (2002)

    Article  MathSciNet  Google Scholar 

  23. Mœglin, C.: Multiplicité 1 dans les Paquets d’Arthur aux Places \(p\)-Adiques, in On Certain \(L\)-Functions, Vol. 13 of Clay mathematics Proceedings, pp. 333–374. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  24. Mœglin, C., Tadić, M.: Construction of discrete series for classical \(p\)-adic groups. J. Am. Math. Soc. 15, 715–786 (2002). (electronic)

    Article  MathSciNet  Google Scholar 

  25. Mœglin, C., Vignéras, M.-F., Waldspurger, J.-L.: Correspondances de Howe sur un Corps \(p\)-Adique. Lecture Notes in Mathematics, vol. 1291. Springer, Berlin (1987)

    Book  Google Scholar 

  26. Mœglin, C., Waldspurger, J.-L.: Le spectre résiduel de \({\rm GL}(n)\). Ann. Sci. École Norm. Sup. (4) 22, 605–674 (1989)

    Article  MathSciNet  Google Scholar 

  27. Muić, G.: A proof of Casselman–Shahidi’s conjecture for quasi-split classical groups. Can. Math. Bull. 44, 298–312 (2001)

    Article  MathSciNet  Google Scholar 

  28. Muić, G.: Composition series of generalized principal series; the case of strongly positive discrete series. Isr. J. Math. 140, 157–202 (2004)

    Article  MathSciNet  Google Scholar 

  29. Muić, G.: Howe correspondence for discrete series representations; the case of (Sp(n); O(V)). J. Reine Angew. Math. 567, 99–150 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Muić, G.: On the structure of theta lifts of discrete series for dual pairs \(({\rm Sp}(n),{\rm O}(V))\). Isr. J. Math. 164, 87–124 (2008)

    Article  MathSciNet  Google Scholar 

  31. Muić, G.: Theta lifts of tempered representations for dual pairs (\(Sp_{2n}\), O(V)). Can. J. Math 60, 1306–1335 (2008)

    Article  Google Scholar 

  32. Rallis, S.: On the Howe duality conjecture. Compos. Math. 51, 333–399 (1984)

    MathSciNet  MATH  Google Scholar 

  33. Ranga Rao, R.: On some explicit formulas in the theory of Weil representation. Pac. J. Math. 157, 335–371 (1993)

    Article  MathSciNet  Google Scholar 

  34. Rodier F.: Whittaker models for admissible representations of reductive \(p\)-adic split groups, pp. 425–430 (1973)

  35. Shahidi, F.: On certain \(L\)-functions. Am. J. Math. 103, 297–355 (1981)

    Article  Google Scholar 

  36. Shahidi, F.: Fourier transforms of intertwining operators and Plancherel measures for \({GL}(n)\). Am. J. Math. 106, 67–111 (1984)

    Article  MathSciNet  Google Scholar 

  37. Shahidi, F.: On Multiplicativity of Local Factors, in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday, Part II (Ramat Aviv, : vol. 3 of Israel Math. Conf. Proc. Weizmann, Jerusalem), vol. 1990, pp 279–289 (1989)

  38. Shahidi, F.: A proof of Langlands’ conjecture on Plancherel measures; complementary series for \(p\)-adic groups. Ann. Math. (2) 132, 273–330 (1990)

    Article  MathSciNet  Google Scholar 

  39. Shahidi, F.: Langlands’ Conjecture on Plancherel Measures for \(p\)-Adic Groups, in Harmonic Analysis on Reductive Groups, (Brunswick, ME, 1989), vol. 101 of Progress in Mathematics, pp. 277–295. Birkhäuser, Boston (1991)

    Google Scholar 

  40. Shahidi, F.: Twisted endoscopy and reducibility of induced representations for \(p\)-adic groups. Duke Math. J. 66, 1–41 (1992)

    Article  MathSciNet  Google Scholar 

  41. Sun, B., Zhu, C.-B.: Conservation relations for local theta correspondence. J. Am. Math. Soc. 28, 939–983 (2015)

    Article  MathSciNet  Google Scholar 

  42. Szpruch, D.: Uniqueness of whittaker model for the metaplectic group. Pac. J. Math. 232, 453–469 (2007)

    Article  MathSciNet  Google Scholar 

  43. Szpruch, D.: Computation of the local coefficients for principal series representations of the metaplectic double cover of SL\(_2(F)\). J. Number Theory 129, 2180–2213 (2009)

    Article  MathSciNet  Google Scholar 

  44. Szpruch, D.: The Langlands–Shahidi method quotient for the metaplectic group and applications. PhD Thesis (2009)

  45. Szpruch, D.: Some irreducibility theorems of parabolic induction on the metaplectic group via the langlands-shahidi method. Isr. J. Math. 195, 897–971 (2013)

    Article  MathSciNet  Google Scholar 

  46. Tadić, M.: Structure arising from induction and Jacquet modules of representations of classical \(p\)-adic groups. J. Algebra 177, 1–33 (1995)

    Article  MathSciNet  Google Scholar 

  47. Tadić, M.: On regular square integrable representations of \(p\)-adic groups. Am. J. Math. 120, 159–210 (1998)

    Article  MathSciNet  Google Scholar 

  48. Waldspurger, J.-L.: Démonstration d’une conjecture de dualité de Howe dans le cas \(p\)-Adique, \(p\ne 2\), in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part I (Ramat Aviv, : vol. 2 of Israel Math. Conf. Proc. Weizmann, Jerusalem), vol. 1990, pp. 267–324 (1989)

Download references

Acknowledgements

This work is supported in part by Croatian Science Foundation under the project IP-2018-01-3628. The authors would like to thank the anonymous referee for his/hers invaluable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Hanzer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Theorem 3.10.

Appendix A: Proof of Theorem 3.10.

Before we begin the proof we remind the reader of our notation: if \(\pi \) is an irreducible representation, we let \(\phi _\pi \) denote its L-parameter.

Proof

We first prove reducibility. Recall that \(a_0= \min \{a: a \text { is even and }1\otimes S_a\hookrightarrow \phi _\sigma \}\). If \(4s_i < a_0\), then \(\phi _{\Theta _0(\sigma )}\) (which is the same as \(\phi _\sigma \)) does not contain \(1\otimes S_{4s_i}\). Therefore, \(\delta ([\nu ^{-(2s_i-\frac{1}{2})},\nu ^{2s_i-\frac{1}{2}}]) \rtimes \Theta _0(\sigma )\) is reducible, and so is \(\gamma _{\psi }^{-1}\delta ([\nu ^{-(2s_i-\frac{1}{2})},\nu ^{2s_i-\frac{1}{2}}]) \rtimes \sigma \), [13]. We now imitate the proof of Proposition 4.2.

We thus assume that \(\sigma \) is square-integrable, so that the long intertwining operator

$$\begin{aligned} \begin{aligned}&A(w_0,s): \gamma _{\psi }^{-1}\delta ([\nu ^{-(2s_i-\frac{1}{2})}, \nu ^{2s_i-\frac{1}{2}}])\nu ^s \rtimes \sigma \\&\quad \rightarrow \gamma _{\psi }^{-1}\delta ([\nu ^{-(2s_i-\frac{1}{2})},\nu ^{2s_i-\frac{1}{2}}])\nu ^{-s} \rtimes \sigma \end{aligned} \end{aligned}$$

is holomorphic at \(s=0\). As before, \(A(w_0,s)\) is the restriction of an intertwining operator \(B(w_0,s)\) which is composed of the following intertwining operators:

$$\begin{aligned} \begin{aligned}&\gamma _{\psi }^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{(2s_i-\frac{1}{2})}])\nu ^s \times \gamma _{\psi }^{-1}\delta ([\nu ^{-(2s_i-\frac{1}{2})},\nu ^{-\frac{1}{2}}])\nu ^s \rtimes \sigma \\&\quad \xrightarrow {T_1(s)} \gamma _{\psi }^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}])\nu ^s \times \gamma _{\psi }^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}])\nu ^{-s} \rtimes \sigma \\&\quad \xrightarrow {T_2(s)} \gamma _{\psi }^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}])\nu ^{-s} \times \gamma _{\psi }^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}])\nu ^s \rtimes \sigma \\&\quad \xrightarrow {T_3(s)} \gamma _{\psi }^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}])\nu ^{-s} \times \gamma _{\psi }^{-1}\delta ([\nu ^{-(2s_i-\frac{1}{2})},\nu ^{-\frac{1}{2}}])\nu ^{-s} \rtimes \sigma . \end{aligned} \end{aligned}$$

Now assume \(\gamma _{\psi }^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}])\rtimes \sigma \) is irreducible. This implies that (after multiplying by a certain positive power of s, if necessary) the operators \(T_1(s)\), \(T_2(s)\) and \(T_3(s)\) are all holomorphic isomorphisms. We thus have a \(k \geqslant 0\) such that \(\lim _{s \rightarrow 0} s^k B(w_0,s)\) is a holomorphic isomorphism. Furthermore, we know that k is strictly positive since \(T_2(s)\) has a pole at \(s=0\). This implies that \(A(w_0,s)\) has a pole for \(s=0\), which contradicts the fact that \(A(w_0,s)\) is holomorphic at \(s=0\). Therefore, \(\gamma _{\psi }^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}])\rtimes \sigma \) must be reducible.

If \(\sigma \) is tempered, but not in discrete series, we complete the proof just like in Prop. 4.2.

We now turn to the proof of irreducibility when \(4s_i=a_0\). First we need the following

Claim

Apart from the Langlands quotient, all the irreducible subquotients of \(\gamma _\psi ^{-1} St_{2s_i}\nu ^{s_i} \rtimes \sigma \) are tempered.

Proof

If \(\sigma \) is in discrete series, this is Corollary 2.1 of [28], which transfers easily to the metaplectic case. When \(\sigma \) is tempered, we can embed it in its tempered support:

$$\begin{aligned} \sigma \hookrightarrow \gamma _\psi ^{-1}\delta _1' \times \cdots \times \gamma _\psi ^{-1}\delta _k' \rtimes \sigma _0. \end{aligned}$$

We then have, with \(\delta =St_{2s_i}\nu ^{s_i}\)

$$\begin{aligned} \gamma _\psi ^{-1}\delta \times \gamma _\psi ^{-1}(\delta _1 \times \cdots \times \delta _k) \rtimes \sigma _0&\xrightarrow {T_1} \gamma _\psi ^{-1}(\delta _1 \times \cdots \times \delta _k) \times \gamma _\psi ^{-1}\delta \rtimes \sigma _0\\&\xrightarrow {T_2} \gamma _\psi ^{-1}(\delta _1 \times \cdots \times \delta _k) \times \gamma _\psi ^{-1}\delta ^\vee \rtimes \sigma _0 \\&\xrightarrow {T_3} \gamma _\psi ^{-1}\delta ^\vee \times \gamma _\psi ^{-1}(\delta _1 \times \cdots \times \delta _k) \rtimes \sigma _0. \end{aligned}$$

Restricting \(T_3 \circ T_2 \circ T_1\) to the subrepresentation \(\gamma _\psi ^{-1}\delta \rtimes \sigma \) we get

$$\begin{aligned} T: \gamma _\psi ^{-1}\delta \rtimes \sigma \rightarrow \gamma _\psi ^{-1}\delta ^\vee \rtimes \sigma . \end{aligned}$$

The image of T is exactly the Langlands quotient of \(\gamma _\psi ^{-1}\delta \rtimes \sigma \). We want to show that the kernel consists only of tempered subquotients. We first note that \(T_1\) and \(T_3\) are isomorphisms: since \(4s_i\) is minimal among a such that \(1\otimes S_a \hookrightarrow \phi \), none of the segments which define \(\delta _1, \dotsc , \delta _k\) are linked to the segment which defines \(\delta \) (or \(\delta ^\vee \)). On the other hand, \(T_2\) need not be an isomorphism, but it is induced from \(T_2': \gamma _\psi ^{-1}\delta \rtimes \sigma _0 \rightarrow \gamma _\psi ^{-1}\delta ^\vee \rtimes \sigma _0\). By the part of this claim which concerns discrete series representations, \(\ker T_2'\) only has tempered subquotients. From here we easily deduce the same for \(T_2\). Thus, any subquotient of \(\ker T\) is in fact contained in \(\ker T_2\) and is therefore tempered. This proves the claim. \(\square \)

We are now ready to prove irreducibility. The \(l=0\) lift of \(\sigma \) to the split tower is \(\Theta _0(\sigma )\). This is a generic representation of the orthogonal group, so we can use the results of [12]. By Propositions 4.7 and 5.1 of [12], we know that there is an irreducible tempered generic representation \(\sigma _1\) such that \(\Theta _0(\sigma ) \hookrightarrow \delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}]) \rtimes \sigma _1\). Therefore, we have \(\delta ([\nu ^{-(2s_i-\frac{1}{2})},\nu ^{-\frac{1}{2}}]) \rtimes \sigma _1 \twoheadrightarrow \Theta _0(\sigma )\). We may now use a slight generalization of Lemma 3.8 (cf. Corollary 3.7 of [5]) to obtain either

$$\begin{aligned} \gamma _\psi ^{-1}\delta ([\nu ^{-(2s_i-\frac{1}{2})},\nu ^{-\frac{3}{2}}]) \rtimes \Theta _{-2}(\sigma _1) \twoheadrightarrow \sigma \end{aligned}$$

or

$$\begin{aligned} \gamma _\psi ^{-1}\delta ([\nu ^{-(2s_i-\frac{1}{2})},\nu ^{-\frac{1}{2}}]) \rtimes \Theta _0(\sigma _1) \twoheadrightarrow \sigma . \end{aligned}$$

We show that the latter cannot be true. To this end, we use Theorem 4.1 (2) of [4]. It shows that we have \(m^{\text {down}}(\sigma _{1{|SO}}) = m^\alpha (\sigma _{1{|SO}})\), with \(\alpha = \eta (z_{\phi _{\sigma _1}})\cdot \epsilon ({\phi _{\sigma _1}}) = \epsilon ({\phi _{\sigma _1}})\) (recall that \(\eta \) is trivial since \(\sigma _1\) is generic). Similarly, \(m^{\text {down}}(\Theta _0(\sigma )_{{|SO}}) = m^{\alpha '}(\Theta _0(\sigma )_{{|SO}})\), with \(\alpha ' = \epsilon ({\phi _{\Theta _0(\sigma )_{{|SO}}}})\). Now it is easy to see that \(\sigma _1\) and \(\Theta _0(\sigma )\) have the same central character. On the other hand, one shows that \(\epsilon ({\phi _{\sigma _1}}) = -\epsilon ({\phi _{\Theta _0(\sigma )_{{|SO}}}})\). Since \(\Theta _0(\sigma )\) obviously has a non-zero lift on level \(l=0\) (it is equal to \(\sigma \)), this implies that \(\Theta _0(\sigma _1) = 0\) (and \(\Theta _0(\sigma _1 \otimes \det ) \ne 0\)).

We have thus shown that

$$\begin{aligned} \gamma _\psi ^{-1}\delta ([\nu ^{-(2s_i-\frac{1}{2})},\nu ^{-\frac{3}{2}}]) \rtimes \Theta _{-2}(\sigma _1) \twoheadrightarrow \sigma . \end{aligned}$$

Moreover, we now know that \(\Theta _{-2}(\sigma _1)\) is the first non-zero lift of \(\sigma _1\), so it is tempered by Theorem 4.5 (1) of [4]. It is also generic, as shown by the above map (and the hereditary property).

Now assume \(\gamma _\psi ^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}]) \rtimes \sigma \) reduces. We have shown that any irreducible subquotient of \(\gamma _\psi ^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}]) \rtimes \sigma \) which is not the Langlands quotient is necessarily tempered. Thus let T be an irreducible tempered representation such that

$$\begin{aligned} T \hookrightarrow \gamma _\psi ^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}]) \rtimes \sigma . \end{aligned}$$

By the above discussion, this implies

$$\begin{aligned}&T \hookrightarrow \gamma _\psi ^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}]) \times \gamma _\psi ^{-1}\delta ([\nu ^{\frac{3}{2}},\nu ^{2s_i-\frac{1}{2}}]) \rtimes \Theta _{-2}(\sigma _1)\\&\quad \Rightarrow \quad T \hookrightarrow \gamma _\psi ^{-1}\delta ([\nu ^{\frac{3}{2}},\nu ^{2s_i-\frac{1}{2}}]) \times \gamma _\psi ^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}]) \rtimes \Theta _{-2}(\sigma _1)\\&\quad \Rightarrow \quad T \hookrightarrow \gamma _\psi ^{-1}\delta ([\nu ^{\frac{3}{2}},\nu ^{2s_i-\frac{1}{2}}]) \times \gamma _\psi ^{-1}\delta ([\nu ^{\frac{3}{2}},\nu ^{2s_i-\frac{1}{2}}]) \times \gamma _\psi ^{-1}\nu ^\frac{1}{2}\rtimes \Theta _{-2}(\sigma _1). \end{aligned}$$

Now \(\gamma _\psi ^{-1}\nu ^\frac{1}{2}\rtimes \Theta _{-2}(\sigma _1) = \gamma _\psi ^{-1}\nu ^{-\frac{1}{2}}\rtimes \Theta _{-2}(\sigma _1)\) by Proposition 4.2, so that

$$\begin{aligned}&T \hookrightarrow \gamma _\psi ^{-1}\delta ([\nu ^{\frac{3}{2}},\nu ^{2s_i-\frac{1}{2}}]) \times \gamma _\psi ^{-1}\delta ([\nu ^{\frac{3}{2}},\nu ^{2s_i-\frac{1}{2}}]) \times \gamma _\psi ^{-1}\nu ^{-\frac{1}{2}}\rtimes \Theta _{-2}(\sigma _1)\\ \text {i.e.} \quad&T \hookrightarrow \gamma _\psi ^{-1}\nu ^{-\frac{1}{2}} \times \gamma _\psi ^{-1}\delta ([\nu ^{\frac{3}{2}},\nu ^{2s_i-\frac{1}{2}}]) \times \gamma _\psi ^{-1}\delta ([\nu ^{\frac{3}{2}},\nu ^{2s_i-\frac{1}{2}}]) \rtimes \Theta _{-2}(\sigma _1). \end{aligned}$$

However, this contradicts Casselman’s criterion. We have thus shown that it is impossible for \(\gamma _\psi ^{-1}\delta ([\nu ^{\frac{1}{2}},\nu ^{2s_i-\frac{1}{2}}]) \rtimes \sigma \) to reduce. This completes our proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakić, P., Hanzer, M. Generic representations of metaplectic groups and their theta lifts. Math. Z. 297, 1421–1465 (2021). https://doi.org/10.1007/s00209-020-02563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02563-z

Mathematics Subject Classification

Navigation