Skip to main content
Log in

Area and Hausdorff dimension of Sierpiński carpet Julia sets

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove the existence of rational maps whose Julia sets are Sierpiński carpets having positive area. Such rational maps can be constructed such that they either contain a Cremer fixed point, a Siegel disk or are infinitely renormalizable. We also construct some Sierpiński carpet Julia sets with zero area but with Hausdorff dimension two. Moreover, for any given number \(s\in (1,2)\), we prove the existence of Sierpiński carpet Julia sets having Hausdorff dimension exactly s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The definition of renormalization needs to exclude a special case, i.e. f itself is a polynomial and U is an open neighborhood of the filled Julia set of f.

  2. Lyubich proved that the Julia set of a quadratic polynomial has zero area if it has no irrational indifferent periodic points and is not infinitely renormalizable.

  3. Obviously, Cremer fixed points and Siegel disks can be defined similarly for rational maps.

  4. The infinitely renormalizable quadratic polynomials constructed by Buff and Chéritat are infinitely satellite renormalizable while Avila and Lyubich’s examples are infinitely primitive renormalizable.

  5. Buff and Chéritat’s construction of quadratic Julia sets with positive area requires that the rotation number is of high type. Moreover, the boundary of the Siegel disk of their construction does not contain the critical point. Actually, it is not known if a quadratic Julia set can have positive area and also contain the boundary of a Siegel disk passing through the critical point.

  6. For the non-renormalizable quadratic polynomials in Theorem 2.5, the post-critical sets may equal to the whole Julia sets. In order to guarantee that the post-critical set of \({\widetilde{f}}_3\) is disjoint with the \(\beta \)-fixed point, we consider the 2-renormalization \((f_3^{\circ 2},U_3,V_3)\) but not 1-renormalization.

References

  1. Avila, A., Buff, X., Chéritat, A.: Siegel disks with smooth boundaries. Acta Math. 193(1), 1–30 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Avila, A., Lyubich, M.: Lebesgue measure of Feigenbaum Julia sets, arXiv:1504.20986 (2015)

  3. Barański, K., Wardal, M.: On the Hausdorff dimension of the Sierpiński Julia sets. Discrete Cont. Dyn. Syst. 35(8), 3293–3313 (2015)

    MATH  Google Scholar 

  4. Bonk, M.: Uniformization of Sierpiński carpets in the plane. Invent. Math. 186(3), 559–665 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Bonk, M., Lyubich, M., Merenkov, S.: Quasisymmetries of Sierpiński carpet Julia sets. Adv. Math. 301, 383–422 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Bonk, M., Merenkov, S.: Quasisymmetric rigidity of square Sierpiński carpets. Ann. Math. 177(2), 591–643 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Buff, X., Chéritat, A.: How regular can the boundary of a quadratic Siegel disk be? Proc. Am. Math. Soc. 135(4), 1073–1080 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Buff, X., Chéritat, A.: Quadratic Julia sets with positive area. Ann. Math. 176(2), 673–746 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Cheraghi, D.: Topology of irrationally indifferent attractors. arXiv:1706.02678 (2017)

  10. Cheraghi, D., DeZotti, A., Yang, F.: Dimension paradox of irrational indifferent attractors. Manuscript in preparation (2018)

  11. Devaney, R.L., Fagella, N., Garijo, A., Jarque, X.: Sierpiński curve Julia sets for quadratic rational maps. Ann. Acad. Sci. Fenn. Math. 39(1), 3–22 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Devaney, R.L., Look, D.M., Uminsky, D.: The escape trichotomy for singularly perturbed rational maps. Indiana Univ. Math. J. 54(6), 1621–1634 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Devaney, R.L., Pilgrim, K.M.: Dynamic classification of escape time Sierpiński curve Julia sets. Fund. Math. 202(2), 181–198 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Devaney, R.L., Russell, E.D.: Connectivity of Julia sets forsingularly perturbed rational maps, In: Chaos, CNN, Memristors and Beyond. World Scientific, pp. 239–245 (2013)

  15. Douady, A., Hubbard, J.H.: On the dynamics of polynomials-like mappings. Ann. Sci. École Norm. Sup. 18, 287–343 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Gao, Y., Haïssinsky, P., Meyer, D., Zeng, J.: Invariant Jordan curves of Sierpiński carpet rational maps. Ergod. Theory Dyn. Sys 38(2), 583–600 (2018)

    MATH  Google Scholar 

  17. Gao, Y., Zeng, J., Zhao, S.: A characterization of Sierpiński carpet rational maps. Discrete Cont. Dyn. Syst. 37(9), 5049–5063 (2017)

    MATH  Google Scholar 

  18. Graczyk, J., Jones, P.: Dimension of the boundary of quasiconformal Siegel disks. Invent. Math. 148(3), 465–493 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Haïssinsky, P., Pilgrim, K.M.: Quasisymmetrically inequivalent hyperbolic Julia sets. Revista Math. Iberoamericana 28, 1025–1034 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Inou, H., Shishikura, M.: The renormalization for parabolic fixed points and their perturbation. Preprint (2008)

  21. Look, D.M.: Sierpiński carpets as Julia sets for imaginary 3-circle inversions. J. Diff. Equ. Appl. 16(5–6), 705–713 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Lyubich, M.: On the Lebesgue measure of the Julia set of a quadratic polynomial. arXiv:9201285 (1991)

  23. Lyubich, M., Minsky, Y.: Laminations in holomorphic dynamics. J. Diff. Geom. 47(1), 17–94 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Mañé, R.: Hyperbolicity, sinks and measure in one-dimensional dynamics. Commun. Math. Phys. 100(4), 495–524 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Mañé, R.: Erratum: “Hyperbolicity, sinks and measure in one-dimensional dynamics”. Commun. Math. Phys. 112(4), 721–724 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Merenkov, S.: Local rigidity for hyperbolic groups with Sierpiński carpet boundaries. Compos. Math. 150(11), 1928–1938 (2014)

    MathSciNet  MATH  Google Scholar 

  27. McMullen, C.T.: The Classification of Conformal Dynamical Systems, Current developments in mathematics, 1995 (Cambridge, MA), 323–360. Internat Press, Cambridge, MA (1994)

    Google Scholar 

  28. McMullen, C.T.: Complex Dynamics and Renormalization. Ann. of Math. Studies, Vol. 135. Princeton University Press, Princeton, NJ (1994)

  29. McMullen, C.T.: Self-similarity of Siegel disks and Hausdorff dimension of Julia sets. Acta Math. 180(2), 247–292 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Milnor, J.: Geometry and dynamics of quadratic rational maps, with an appendix by J. Milnor and L. Tan. Exper. Math. 2(1), 37–83 (1993)

    MATH  Google Scholar 

  31. Morosawa, S.: Julia sets of subhyperbolic rational functions. Complex Var. Theory Appl. 41(2), 151–162 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Pilgrim, K.M.: Cylinders for Iterated Rational Maps. Thesis, University of California, Berkeley (1994)

  33. Przytycki, F.: On the hyperbolic Hausdorff dimension of the boundary of a basin of attraction for a holomorphic map and of quasirepellers. Bull. Pol. Acad. Sci. Math. 54(1), 41–52 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Qiu, W., Wang, X., Yin, Y.: Dynamics of McMullen maps. Adv. Math. 229(4), 2525–2577 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Qiu, W., Yang, F.: Hausdorff dimension and quasi-symmetric uniformization of Cantor circle Julia sets. arXiv:1811.10042 (2018)

  36. Qiu, W., Yang, F., Yin, Y.: Quasisymmetric geometry of the Julia sets of McMullen maps. Sci. China. Math. 61(12), 2283–2298 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Qiu, W., Yang, F., Zeng, J.: Quasisymetric geometry of Sierpiński carpet Julia sets. Fund. Math. 244(1), 73–107 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Ruelle, D.: Repellers for real analytic maps. Ergod. Thorey. Dyn. Syst. 2, 99–107 (1982)

    MathSciNet  MATH  Google Scholar 

  39. Shishikura, M.: The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets. Ann. Math. 147(2), 225–267 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Shishikura, M., Yang, F.: The high type quadratic Siegel disks are Jordan domains. arXiv:1608.04106v3 (2018)

  41. Steinmetz, N.: On the dynamics of the McMullen family \(R(z)=z^m+\lambda /z^\ell \). Conform. Geom. Dyn. 10, 159–183 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Steinmetz, N.: Sierpiński and non-Sierpiński curve Julia sets in families of rational maps. J. Lond. Math. Soc. 78(2), 290–304 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Tan, L., Yin, Y.: Local connectivity of the Julia set for geometrically finite rational maps. Sci. China Ser. A 39, 39–47 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Urbański, M.: On the Hausdorff dimension of a Julia set with a rationally indifferent periodic point. Stud. Math. 97(3), 167–188 (1991)

    MathSciNet  MATH  Google Scholar 

  45. Urbański, M., Zdunik, A.: Hausdorff dimension of harmonic measure for self-conformal sets. Adv. Math. 171(1), 1–58 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Whyburn, G.T.: Analytic Topology, AMS Colloquium Publications, vol. 28. American Mathematical Society, New York (1942)

    Google Scholar 

  47. Whyburn, G.T.: Topological characterization of the Sierpiński curves. Fund. Math. 45, 320–324 (1958)

    MathSciNet  MATH  Google Scholar 

  48. Xiao, Y., Qiu, W., Yin, Y.: On the dynamics of generalized McMullen maps. Ergod. Theory Dyn. Syst. 34(6), 2093–2112 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Yang, F.: A criterion to generate carpet Julia sets. Proc. Am. Math. Soc. 146(5), 2129–2141 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Yang, F., Yin, Y.: Non-renormalizable quadratic Julia sets with Hausdorff dimension two. Preprint (2018)

  51. Zdunik, A.: Parabolic orbifolds and the dimension of the maximal measure for rational maps. Invent. Math. 99(3), 627–649 (1990)

    MathSciNet  MATH  Google Scholar 

  52. Zeng, J., Su, W.: Quasisymmetric rigidity of Sierpiński carpets \(F_{n, p}\). Ergod. Theory. Dyn. Syst. 35(5), 1658–1680 (2015)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Huojun Ruan for providing a method to construct the Sierpiński carpets (not Julia sets) with Hausdorff dimension one (Theorem D), to Xiaoguang Wang, Yongcheng Yin and Jinsong Zeng for offering a proof of Lemma 5.2. We would also like to thank Arnaud Chéritat, Kevin Pilgrim, Feliks Przytycki, Weiyuan Qiu, Yongcheng Yin and Anna Zdunik for helpful discussions and comments. We are also very grateful to the referee for his/her helpful suggestions which largely improve the readability of this paper. This work is supported by National Natural Science Foundation of China (grant No. 11671092) and the Fundamental Research Funds for the Central Universities (grant No. 0203-14380025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Yang, F. Area and Hausdorff dimension of Sierpiński carpet Julia sets. Math. Z. 294, 1441–1456 (2020). https://doi.org/10.1007/s00209-019-02319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02319-4

Keywords

Mathematics Subject Classification

Navigation