Skip to main content
Log in

A weighted topological quantum field theory for Quot schemes on curves

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study Quot schemes of vector bundles on algebraic curves. Marian and Oprea gave a description of a topological quantum field theory (TQFT) studied by Witten in terms of intersection numbers on Quot schemes of trivial bundles. Since these Quot schemes can have the wrong dimension, virtual classes are required. But Quot schemes of general vector bundles always have the right dimension. Using the degree of the general vector bundle as an additional parameter, we construct a weighted TQFT containing both Witten’s TQFT and the small quantum cohomology TQFT of the Grassmannian. This weighted TQFT is completely geometric (no virtual classes are needed), can be explicitly computed, and recovers known formulas enumerating the points of finite Quot schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use the word “stable” loosely to include balanced vector bundles in the case of \(\mathbb {P}^1\) and semistable vector bundles in genus 1. See Sect. 6.1.

  2. In (1), \(Q_{e,\mathbb {P}^1}\) is empty for all \(e < 0\), even though the expected dimension could be non-negative. There are similar cases on \(\mathbb {P}^1\) when V is balanced, so (3) is slightly imprecise.

  3. Actually, in case (4), we only show that \(W \cap U_{e,V}\) is dense in the intersection of W with the top-dimensional component of \(Q_{e,V}\).

References

  1. Abrams, L.: The quantum Euler class and the quantum cohomology of the Grassmannians. Israel J. Math. 117, 335–352 (2000). https://doi.org/10.1007/BF02773576

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertram, A.: Towards a Schubert calculus for maps from a Riemann surface to a Grassmannian. Intern. J. Math. 5(6), 811–825 (1994). https://doi.org/10.1142/S0129167X94000401

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertram, A.: Quantum Schubert calculus. Adv. Math. 128(2), 289–305 (1997). https://doi.org/10.1006/aima.1997.1627

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertram, A., Daskalopoulos, G., Wentworth, R.: Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians. J. Am. Math. Soc. 9(2), 529–571 (1996). https://doi.org/10.1090/S0894-0347-96-00190-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Cavalieri, R.: A topological quantum field theory of intersection numbers for moduli spaces of admissible covers. ProQuest LLC, Ann Arbor, MI (2005). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3164627. Thesis (Ph.D.) The University of Utah

  6. Goller, T.: Enumerative Geometry of Quot Schemes. ProQuest LLC, Ann Arbor, MI (2017). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10267450. Thesis (Ph.D.)–The University of Utah

  7. Grothendieck, A.: Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert. In: Séminaire Bourbaki, Vol. 6, pp. Exp. No. 221, 249–276. Soc. Math. France, Paris (1995)

  8. Hirschowitz, A.: Problèmes de Brill-Noether en rang supérieur. C. R. Acad. Sci. Paris Sér. I Math. 307(4), 153–156 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Holla, Y.I.: Counting maximal subbundles via Gromov–Witten invariants. Math. Ann. 328(1–2), 121–133 (2004). https://doi.org/10.1007/s00208-003-0475-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Kempf, G., Laksov, D.: The determinantal formula of Schubert calculus. Acta Math. 132, 153–162 (1974). https://doi.org/10.1007/BF02392111

    Article  MathSciNet  MATH  Google Scholar 

  11. Kleiman, S.L.: The transversality of a general translate. Compos. Math. 28, 287–297 (1974)

    MathSciNet  MATH  Google Scholar 

  12. Kollár, J.: Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32. Springer, Berlin (1996). https://doi.org/10.1007/978-3-662-03276-3

  13. Kontsevich, M., Manin, Y.: Gromov–Witten classes, quantum cohomology, and enumerative geometry [ MR1291244 (95i:14049)]. In: Mirror symmetry, II, AMS/IP Stud. Adv. Math., vol. 1, pp. 607–653. Amer. Math. Soc., Providence, RI (1997)

  14. Lange, H., Newstead, P.E.: Maximal subbundles and Gromov–Witten invariants. In: A tribute to C. S. Seshadri (Chennai, 2002), Trends Math., pp. 310–322. Birkhäuser, Basel (2003)

  15. Marian, A., Oprea, D.: The level-rank duality for non-abelian theta functions. Invent. Math. 168(2), 225–247 (2007). https://doi.org/10.1007/s00222-006-0032-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Marian, A., Oprea, D.: GL Verlinde numbers and the Grassmann TQFT. Port. Math. 67(2), 181–210 (2010). https://doi.org/10.4171/PM/1864

    Article  MathSciNet  MATH  Google Scholar 

  17. Popa, M., Roth, M.: Stable maps and Quot schemes. Invent. Math. 152(3), 625–663 (2003). https://doi.org/10.1007/s00222-002-0279-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Rietsch, K.: Quantum cohomology rings of Grassmannians and total positivity. Duke Math. J. 110(3), 523–553 (2001). https://doi.org/10.1215/S0012-7094-01-11033-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Ruan, Y., Tian, G.: A mathematical theory of quantum cohomology. J. Differential Geom. 42(2), 259–367 (1995). http://projecteuclid.org/euclid.jdg/1214457234

  20. Russo, B., Teixidor i Bigas, M.: On a conjecture of Lange. J. Algebraic Geom. 8(3), 483–496 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Seshadri, C.S.: Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96. Société Mathématique de France, Paris (1982). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980

  22. Witten, E.: The Verlinde algebra and the cohomology of the Grassmannian. In: Geometry, Topology, & Physics, Conference Proceeding Lecture Notes Geometric Topology, IV, pp. 357–422. Int. Press, Cambridge, MA (1995)

Download references

Acknowledgements

I would like to thank Aaron Bertram for providing the vision that led to the weighted TQFT as well as guidance during countless discussions. I am grateful to Nicolas Perrin and Daewoong Cheong for suggesting useful references and to the referee for catching many mistakes and helping to make the last part of the proof of Main Theorem (a) comprehensible. Most of the work was completed as part of my PhD thesis at the University of Utah. The writing was completed at the Korea Institute for Advanced Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Goller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by the National Science Foundation Research Training Grant DMS-1246989.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goller, T. A weighted topological quantum field theory for Quot schemes on curves. Math. Z. 293, 1085–1120 (2019). https://doi.org/10.1007/s00209-018-2221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2221-z

Keywords

Mathematics Subject Classification

Navigation