Skip to main content
Log in

Vector bundles whose restriction to a linear section is Ulrich

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

An Ulrich sheaf on an n-dimensional projective variety \(X \subseteq \mathbb {P}^{N}\) is an initialized ACM sheaf which has the maximum possible number of global sections. Using a construction based on the representation theory of Roby–Clifford algebras, we prove that every normal ACM variety admits a reflexive sheaf whose restriction to a general 1-dimensional linear section is Ulrich; we call such sheaves \(\delta \)-Ulrich. In the case \(n=2,\) where \(\delta \)-Ulrich sheaves satisfy the property that their direct image under a general finite linear projection to \(\mathbb {P}^2\) is a semistable instanton bundle on \(\mathbb {P}^{2}\), we show that some high Veronese embedding of X admits a \(\delta \)-Ulrich sheaf with a global section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aprodu, M., Costa, L., Miro-Roig, R.: Ulrich bundles on ruled surfaces. Preprint arXiv:1609.08340

  2. Aprodu, M., Farkas, G., Ortega, A.: Minimal resolutions, Chow forms and Ulrich bundles on K3 surfaces. J. Reine Angew. Math. doi:10.1515/crelle-2014-0124

  3. Beauville, A.: Ulrich bundles on abelian surfaces. Proc. Am. Math. Soc. 144(11), 4609–4611 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  4. Backelin, J., Herzog, J., Sanders, H.: Matrix factorizations of homogeneous polynomials. In: Avramov, L., Tchakerian, K. (eds.) Algebra Some Current Trends (Varna, 1986), Volume 1352 of Lecture Notes in Mathematics, pp. 1–33. Springer, Berlin (1988)

  5. Brennan, J.P., Herzog, J., Ulrich, B.: Maximally generated Cohen–Macaulay modules. Math. Scand. 61(2), 181–203 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Backelin, J., Herzog, J., Ulrich, B.: Linear maximal Cohen–Macaulay modules over strict complete intersections. J. Pure Appl. Algebra 71(2–3), 187–202 (1991)

    MATH  MathSciNet  Google Scholar 

  7. Borisov, L., Nuer, H.: Ulrich bundles on Enriques surfaces. Preprint arXiv:1606.01459

  8. Childs, L.N.: Linearizing of \(n\)-ic forms and generalized Clifford algebras. Linear Multilinear Algebra 5(4), 267–278 (1977/1978)

  9. Coskun, I., Huizenga, J., Woolf, M.: Equivariant Ulrich Bundles on Flag Varieties. Preprint arXiv:1507.00102

  10. Costa, L., Miró-Roig, R.M.: \(GL(V)\)-invariant Ulrich bundles on Grassmannians. Math. Ann. 361(1–2), 443–457 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. Costa, L., Miró-Roig, R.M., Pons-Llopis, J.: The representation type of Segre varieties. Adv. Math. 230(4–6), 1995–2013 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eisenbud, D., Schreyer, F.-O., Weyman, J.: Resultants and Chow forms via exterior syzygies. J. Am. Math. Soc. 16(3), 537–579 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Faenzi, D., Pons-Llopis, J.: The CM representation type of projective varieties. Preprint arXiv:1504.03819

  14. Hanes, D.: Special Conditions on Maximal Cohen–Macaulay Modules, and Applications to the Theory of Multiplicities. University of Michigan, Ph.D. thesis (1999)

  15. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves. Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  16. Jardim, M.: Instanton sheaves on complex projective spaces. Collect. Math. 57(1), 69–91 (2006)

    MATH  MathSciNet  Google Scholar 

  17. Kulkarni, R.S., Mustopa, Y., Shipman, I.: The characteristic polynomial of an algebra and representations. Preprint arXiv:1507.08361

  18. Kulkarni, R.S., Mustopa, Y., Shipman, I.: Ulrich sheaves and higher-rank Brill–Noether theory. J. Algebra 474, 166–179 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  19. Migliore, J., Nagel, U.: Survey article: a tour of the weak and strong Lefschetz properties. J. Commut. Algebra 5(3), 329–358 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Miró-Roig, R.M.: The representation type of rational normal scrolls. Rend. Circ. Mat. Palermo 62(1), 153–164 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (2011). Corrected reprint of the 1988 edition with an appendix by S. I. Gelfand

  22. Pappacena, C.J.: Matrix pencils and a generalized Clifford algebra. Linear Algebra Appl. 313(1–3), 1–20 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Procesi, C.: A formal inverse to the Cayley–Hamilton theorem. J. Algebra 107(1), 63–74 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Roby, N.: Algèbres de Clifford des formes polynomes. C. R. Acad. Sci. Paris Sér A–B 268, 484–486 (1969)

    MATH  MathSciNet  Google Scholar 

  25. Van den Bergh, M.: Linearisations of binary and ternary forms. J. Algebra 109(1), 172–183 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

I.S. was partially supported during the preparation of this paper by National Science Foundation award DMS-1204733. R. K. was partially supported by the National Science Foundation awards DMS-1004306 and DMS-1305377. We would like to thank the referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Mustopa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, R.S., Mustopa, Y. & Shipman, I. Vector bundles whose restriction to a linear section is Ulrich. Math. Z. 287, 1307–1326 (2017). https://doi.org/10.1007/s00209-017-1869-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1869-0

Keywords

Navigation