Skip to main content
Log in

On 2-adic deformations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We compute the versal deformation ring of a split generic 2-dimensional representation \(\chi _1\oplus \chi _2\) of the absolute Galois group of \(\mathbb {Q}_p\). As an application, we show that the Breuil–Mézard conjecture for both non-split extensions of \(\chi _1\) by \(\chi _2\) and \(\chi _2\) by \(\chi _1\) implies the Breuil–Mézard conjecture for \(\chi _1\oplus \chi _2\). The result is new for \(p=2\), the proof works for all primes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bellaïche, J., Chenevier, G.: Families of Galois representations and Selmer groups. Astérisque 324. Soc. Math. France (2009)

  2. Bellaïche, J.: Pseudodeformations. Math. Z. 270(3), 1163–1180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böckle, G., Juschka, A.-K.: Irreducibility of versal deformation rings in the \((p, p)\)-case for \(2\)-dimensional representations. Preprint 2014

  4. Böckle, G.: Demuškin groups with group actions and applications to deformations of Galois representations. Compositio 121, 109–154 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Breuil, C., Mézard, A.: Multiplicités modulaires et représentations de \({\rm GL}_2({\mathbb{Z}})\) et de Gal\((\overline{\mathbb{Q}}_p/{\mathbb{Q}}_p)\) en \(l=p\). Duke Math. J. 115, 205–310 (2002)

    Article  MathSciNet  Google Scholar 

  6. Chenevier, G.: ‘Sur la variété des caractères \(p\)-adique de Gal\((\overline{\mathbb{Q}}_p/{\mathbb{Q}}_p)\), preprint 2009. http://gaetan.chenevier.perso.math.cnrs.fr/pub.html

  7. Chenevier, G.: The \(p\)-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings. In: Diamond, F., Kassaei, P.L., Kim, M. (eds.), Automorphic forms and Galois representations, vol. 1, LMS Lecture Note Series 414, pp. 221–285 (2014)

  8. Emerton, M., Gee, T.: A geometric perspective on the Breuil-Mézard conjecture. Journal de l’Institut de Mathématiques de Jussieu 13(1), 183–223 (2014)

    Article  MATH  Google Scholar 

  9. Henniart, G.: ‘Sur lunicité des types pour \({\rm GL}_2\)’, Appendix to [5]

  10. Hu, Y., Tan, F.: The Breuil-Mézard conjecture for non-scalar split residual representations. Ann. Scient. de l’E.N.S. 4e série, tome 48, 1381–1419 (2015)

  11. Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. II. Invent. Math. 178(3), 505–586 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kisin, M.: Potentially semi-stable deformation rings. JAMS 21(2), 513–546 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Kisin, M.: The Fontaine–Mazur conjecture for \({\rm GL}_2\). JAMS 22(3), 641–690 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Mazur, B.: Deforming Galois representations. In: Ihara, Y., Ribet, K., Serre, J.-P. (eds.) Galois Groups Over \({\mathbb{Q}}\) (Berkley, CA, 1987), pp. 385–437. Springer, New York (1989)

    Chapter  Google Scholar 

  15. Paškūnas, V.: Extensions for supersingular representations of \({\rm GL}_2({\mathbb{Q}}_p)\). Astérisque 331, 317–353 (2010)

    MATH  Google Scholar 

  16. Paškūnas, V.: The image of Colmez’s Montreal functor. Publ. Math. Inst. Hautes Études Sci. 118, 1–191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Paškūnas, V.: On the Breuil-Mézard conjecture. Duke Math. J. 164(2), 297–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Paškūnas, V.: On \(2\)-dimensional \(2\)-adic Galois representations of local and global fields. Algebra Number Theory 10(6), 1301–1358 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pink, R.: Classification of pro-\(p\) subgroups of \({\rm SL}_2\) over a \(p\)-adic ring, where \(p\) is an odd prime. Compositio 88(3), 251–264 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Schlessinger, M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Serre, J.-P.: Local Algebra. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

A large part of the paper was written while visiting Michael Spieß at the University of Bielefeld. I thank SFB 701 for generous support and for providing an excellent working environment during my visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vytautas Paškūnas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paškūnas, V. On 2-adic deformations. Math. Z. 286, 801–819 (2017). https://doi.org/10.1007/s00209-016-1785-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1785-8

Keywords

Mathematics Subject Classification

Navigation