Skip to main content
Log in

Weak type (1, 1) of some operators for the Laplacian with drift

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(v = (v_1, \ldots , v_n)\) be a vector in \(\mathbb {R}^n {\setminus } \{ 0 \}\). Consider the Laplacian on \(\mathbb {R}^n\) with drift \(\Delta _{v} = \sum _{i = 1}^n \Big ( \frac{\partial ^2}{\partial x_i^2} + 2 v_i \frac{\partial }{\partial x_i} \Big )\) and the measure \(d\mu (x) = e^{2 \langle v, x \rangle } dx\), with respect to which \(\Delta _{v}\) is self-adjoint. Let d and \(\nabla \) denote the Euclidean distance and the gradient operator on \(\mathbb {R}^n\). Consider the space \((\mathbb {R}^n, d, d\mu )\), which has the property of exponential volume growth. We obtain weak type (1, 1) for the Riesz transform \(\nabla (- \Delta _{v} )^{-\frac{1}{2}}\) and for the heat maximal operator, with respect to \(d\mu \). Further, we prove that the uncentered Hardy–Littlewood maximal operator is bounded on \(L^p\) for \(1 < p \le +\infty \) but not of weak type (1, 1) if \(n \ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexopoulos, G.: An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth. Can. J. Math. 44, 691-727 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anker, J.-P.: Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces. Duke Math. J. 65, 257-297 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anker, J.-P., Damek, E., Yacoub, C.: Spherical analysis on harmonic AN groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23, 643-679 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Auscher, P., Coulhon, T., Duong, X.-T., Hofmann, S.: Riesz transform on manifolds and heat kernel regularity. Ann. Sci. École Norm. Sup. (4) 37, 911-957 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Bakry, D.: Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités XXI. Lecture Notes in Math., vol. 1247. Springer, Berlin, pp. 137-172 (1987)

  6. Carron, G., Coulhon, T., Hassell, A.: Riesz transform and $L^p$-cohomology for manifolds with Euclidean ends. Duke Math. J. 133, 59-93 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coulhon, T., Duong, X.T.: Riesz transforms for $1 \le p \le 2$. Trans. Am. Math. Soc. 351, 1151-1169 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cowling, M.E., Gaudry, G., Giulini, S., Mauceri, G.: Weak type $(1, 1)$ estimates for heat kernel maximal functions on Lie groups. Trans. Am. Math. Soc. 323, 637-649 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Forzani, L., Scotto, R., Sjögren, P., Urbina, W.: On the $L^p$ boundedness of the non-centered Gaussian Hardy-Littlewood maximal function. Proc. Am. Math. Soc. 130, 73-79 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. García-Cuerva, J., Mauceri, G., Meda, S., Sjögren, P., Torrea, J.L.: Maximal operators for the holomorphic Ornstein-Uhlenbeck semigroup. J. London Math. Soc. (2) 67, 219-234 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. Academic Press, Inc., San Diego, CA. Reproduction in P.R. China authorized by Elsevier (Singapore) Pte Ltd (2007)

  12. Grigor’yan, A.: Heat kernel and analysis on manifolds. AMS/IP Studies in Advanced Mathematics, 47. American Mathematical Society, Providence, RI; International Press, Boston, MA (2009)

  13. Hebisch, W., Steger, T.: Multipliers and singular integrals on exponential growth groups. Math. Z. 245, 37-61 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ionescu, A.: A maximal operator and a covering lemma on non-compact symmetric spaces. Math. Res. Lett. 7, 83-93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, H.-Q.: La transformation de Riesz sur les variétés coniques. J. Funct. Anal. 168, 145-238 (1999)

    Article  MathSciNet  Google Scholar 

  16. Li, H.-Q.: Analyse sur les variétés cuspidales. Math. Ann. 326, 625-647 (2003)

    Article  MathSciNet  Google Scholar 

  17. Li, H.-Q.: La fonction maximale non centrée de Hardy-Littlewood sur les variétiés de type cuspidales. J. Funct. Anal. 229, 155-183 (2005)

    Article  MathSciNet  Google Scholar 

  18. Li, H.-Q.: Les fonctions maximales de Hardy-Littlewood pour des measures sur les variétés cuspidales. J. Math. Pures Appl. 88, 261-275 (2007)

    Article  MathSciNet  Google Scholar 

  19. Li, H.-Q.: Estimations optimales du noyau de la chaleur sur les variétés cuspidales. Potential Anal. 27, 225-249 (2007)

    Article  MathSciNet  Google Scholar 

  20. Li, H.-Q.: Behavior of maximal functions associated to constant coefficient elliptic differential operators in ${\bb R\it }^{n}$. Preprint (2013)

  21. Lohoué, N.: Comparaison des champs de vecteurs et des puissances du laplacien sur une variété riemannienne à courbure non positive. J. Funct. Anal. 61, 164-201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lohoué, N.: Transformées de Riesz et fonctions de Littlewood-Paley sur les groupes non moyennables. C. R. Acad. Sci. Paris 306, 327-330 (1988)

    MathSciNet  MATH  Google Scholar 

  23. Lohoué, N.: Estimations de certaines fonctions maximales et des transformées de Riesz multiples sur les variétés de Cartan-Hadamard et les groupes unimodulaires. C. R. Acad. Sci. Paris 312, 561-566 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Lohoué, N.: Transformées de Riesz et fonctions sommables. Am. J. Math. 114, 875-922 (1992)

    Article  MATH  Google Scholar 

  25. Lohoué, N., Mustapha, S.: Sur les transformées de Riesz sur les groupes de Lie moyennables et sur certains espaces homogènes. Can. J. Math. 50, 1090-1104 (1998)

    Article  MATH  Google Scholar 

  26. Lohoué, N., Mustapha, S.: Sur les transformées de Riesz sur les espaces homogènes des groupes de Lie semi-simples. Bull. Soc. Math. France 128, 485-495 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Lohoué, N., Mustapha, S.: Sur les transformées de Riesz dans le cas du Laplacien avec drift. Trans. Am. Math. Soc. 356, 2139-2147 (2004)

    Article  MATH  Google Scholar 

  28. Menárguez, T., Pérez, S., Soria, F.: The Mehler maximal function: a geometric proof of the weak type 1. J. London Math. Soc. (2) 61, 846-856 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nowak, A., Sjögren, P.: Weak type $(1, 1)$ estimates for maximal operators associated with various multi-dimensional systems of Laguerre functions. Indiana Univ. Math. J. 56, 417-436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Saloff-Coste, L.: Analyse sur les groupes de Lie à croissance polynômiale. Ark. Math. 28, 315-331 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sjögren, P.: On the maximal function for the Mehler kernel. Harmonic analysis (Cortona, 1982). Lecture Notes in Math. 992, pp. 73-82. Springer, Berlin (1983)

  32. Sjögren, P.: A remark on the maximal function for measures in $R^n$. Am. J. Math. 105, 1231-1233 (1983)

    Article  MathSciNet  Google Scholar 

  33. Sjögren, P.: An estimate for a first-order Riesz operator on the affine group. Trans. Am. Math. Soc. 351, 3301-3314 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sjögren, P., Soria, F.: Sharp estimates for the non-centered maximal operator associated to Gaussian and other radial measures. Adv. Math. 181, 251-275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stein, E.M.: Topics in harmonic analysis related to the Littlewood-Paley theory. Annals of Mathematical Studies, vol. 63. Princeton University Press, Princeton, NJ (1970)

  36. Stein, E.M., Weiss, N.J.: On the convergence of Poisson integrals. Trans. Am. Math. Soc. 140, 35-54 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  37. Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52, 48-79 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vargas, A.M.: On the maximal function for rotation invariant measures in $ R^n$. Studia Math. 110, 9-17 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

H.-Q. Li is partially supported by NSF of China (Grant No. 11171070) and “The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sjögren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HQ., Sjögren, P. & Wu, Y. Weak type (1, 1) of some operators for the Laplacian with drift. Math. Z. 282, 623–633 (2016). https://doi.org/10.1007/s00209-015-1555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1555-z

Keywords

Mathematics Subject Classification

Navigation