Skip to main content

Advertisement

Log in

Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part I

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We give a generalized curvature-dimension inequality connecting the geometry of sub-Riemannian manifolds with the properties of its sub-Laplacian. This inequality is valid on a large class of sub-Riemannian manifolds obtained from Riemannian foliations. We give a geometric interpretation of the invariants involved in the inequality. Using this inequality, we obtain a lower bound for the eigenvalues of the sub-Laplacian. This inequality also lays the foundation for proving several powerful results in Part II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Barilari, D., Rizzi, L.: Curvature: a variational approach. To appear in: Memoirs AMS. Arxiv e-prints: arXiv:1306.5318 (2013)

  2. Agrachev, A., Boscain, U., Gauthier, J.P., Rossi, F.: The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256(8), 2621–2655 (2009). doi:10.1016/j.jfa.2009.01.006

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, pp. 177-206. Springer, Berlin (1985). doi:10.1007/BFb0075847

  4. Bakry, D., Ledoux, M.: Lévy-Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math. 123(2), 259–281 (1996). doi:10.1007/s002220050026

    Article  MathSciNet  MATH  Google Scholar 

  5. Barilari, D., Rizzi, L.: Comparison theorems for conjugate points in sub-Riemannian geometry. To appear in: ESAIM Control Optim. Calc. Var. doi:10.1051/cocv/2015013

  6. Baudoin, F., Bonnefont, M.: Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality. J. Funct. Anal. 262(6), 2646–2676 (2012). doi:10.1016/j.jfa.2011.12.020

    Article  MathSciNet  MATH  Google Scholar 

  7. Baudoin, F., Bonnefont, M., Garofalo, N.: A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. Math. Ann. 358(3–4), 833–860 (2014). doi:10.1007/s00208-013-0961-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. To appear in: J. Eur. Math. Soc. ArXiv e-prints: arXiv:1101.3590 (2011)

  9. Baudoin, F., Kim, B., Wang, J.: Transverse Weitzenböck formulas and curvature dimension inequalities on Riemannian foliations with totally geodesic leaves. ArXiv e-prints: arXiv:1408.0548 (2014)

  10. Baudoin, F., Wang, J.: Curvature dimension inequalities and subelliptic heat kernel gradient bounds on contact manifolds. Potential Anal. 40(2), 163–193 (2014). doi:10.1007/s11118-013-9345-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Bott, R.: On a topological obstruction to integrability. In: Global Analysis (Proceedings of the Symposium Pure Math., vol. XVI, Berkeley, Calif., 1968), pp. 127-131. American Math. Soc., Providence, RI (1970)

  12. Chow, W.L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117, 98–105 (1939)

    MathSciNet  MATH  Google Scholar 

  13. Émery, M.: Stochastic calculus in manifolds. Universitext. Springer, Berlin (1989). doi:10.1007/978-3-642-75051-9. With an appendix by P.-A. Meyer

  14. Hladky, R.K.: Bounds for the first eigenvalue of the horizontal Laplacian in positively curved sub-Riemannian manifolds. Geom. Dedicata 164, 155–177 (2013). doi:10.1007/s10711-012-9766-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsu, E.P.: Stochastic analysis on manifolds. In: Graduate Studies in Mathematics, vol. 38. American Mathematical Society, Providence, RI (2002). doi:10.1090/gsm/038

  17. Kolář, I., Michor, P.W., Slovák, J.: Natural operations in differential geometry. Springer, Berlin (1993). doi:10.1007/978-3-662-02950-3

  18. Li, C., Zelenko, I.: Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries. J. Geom. Phys. 61(4), 781–807 (2011). doi:10.1016/j.geomphys.2010.12.009

    Article  MathSciNet  MATH  Google Scholar 

  19. Meyer, P.A.: Géométrie stochastique sans larmes. In: Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), Lecture Notes in Math., vol. 850, pp. 44-102. Springer, Berlin (1981)

  20. Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. In: Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence, RI (2002)

  21. Rashevskii, P.K.: On joining any two points of a completely nonholonomic space by an admissible line. Math. Ann. 3, 83–94 (1938)

    Google Scholar 

  22. Reinhart, B.L.: Foliated manifolds with bundle-like metrics. Ann. Math. 2(69), 119–132 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shigekawa, I.: On stochastic horizontal lifts. Z. Wahrsch. Verw. Gebiete 59(2), 211–221 (1982). doi:10.1007/BF00531745

    Article  MathSciNet  MATH  Google Scholar 

  24. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24(2), 221–263 (1986). http://projecteuclid.org/euclid.jdg/1214440436

  25. Sturm, K.T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994). doi:10.1515/crll.1994.456.173

    MathSciNet  MATH  Google Scholar 

  26. Wang, F.Y.: Equivalence of dimension-free Harnack inequality and curvature condition. Integral Equ. Oper. Theory 48(4), 547–552 (2004). doi:10.1007/s00020-002-1264-y

    Article  MathSciNet  MATH  Google Scholar 

  27. Zelenko, I., Li, C.: Parametrized curves in Lagrange Grassmannians. C. R. Math. Acad. Sci. Paris 345(11), 647–652 (2007). doi:10.1016/j.crma.2007.10.034

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Fonds National de la Recherche Luxembourg (AFR 4736116 and OPEN Project GEOMREV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlend Grong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grong, E., Thalmaier, A. Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part I. Math. Z. 282, 99–130 (2016). https://doi.org/10.1007/s00209-015-1534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1534-4

Keywords

Mathematics Subject Classification

Navigation