Skip to main content
Log in

Multiple blow-up solutions for an anisotropic 2-dimensional nonlinear Neumann problem

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the following boundary value problem

$$\begin{aligned} \left\{ \begin{array}{ll} -div(a(x)\nabla u)+ a(x)u=0,\ u>0,\ \ \ \ &{}\quad \mathrm{in}\ \Omega ;\\ \frac{\partial u}{\partial \nu }=\lambda u^{p-1}e^{u^p},\ \ \ &{}\quad \mathrm{on}\ \partial \Omega , \end{array} \right. \end{aligned}$$
(0.1)

where \(\Omega \) is a bounded domain in \(\mathbb {R}^2\) with smooth boundary, \(\nu \) is the unit outer normal vector of \(\partial \Omega \), and a(x) is a positive smooth function in \({\overline{\Omega }}\), \(\lambda >0\) is a small parameter and \(0< p <2\). We construct bubbling solutions to problem (0.1), which blow-up at points near a local maximum of a(x) on \(\partial \Omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryan, K., Vogelius, M.: Singular solutions to a nonlinear elliptic boundary value problem originating from corrosion modeling. Quart. Appl. Math. 60(4), 675–694 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Castro, H.: Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent. J. Differ. Equ. 246(8), 2991–3037 (2009)

    Article  MATH  Google Scholar 

  3. Dávila, J., del Pino, M., Musso, M.: Concentrating solutions in a two-dimensional elliptic problem with exponential Neumann data. J. Funct. Anal. 227(2), 430–490 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. del Pino, M., Kowalczyk, M., Musso, M.: Singular limits in Liouville-type equations. Calc. Var. Partial Differ. Equ. 24, 47–81 (2005)

    Article  MATH  Google Scholar 

  5. del Pino, M., Musso, M., Ruf, B.: New solutions for Trudinger–Moser critical equations in \(\mathbb{R}^2\). J. Funct. Anal. 258, 421–457 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Deng, S.-B., Musso, M.: New solutions for critical Neumann problems in \({\mathbb{R}}^{2}\). Preprint (2013)

  7. Deng, S.-B., Musso, M.: Bubbling solutions for an exponential nonlinearity in \(\mathbb{R}^2\). J. Differ. Equ. 257, 2259–2302 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deng, S.-B., Musso, M.: Bubbling solutions for elliptic equation with exponential Neumann data in \({\mathbb{R}}^{2}\), Annali Scuola Normale Superiore di Pisa Cl. Sci. (5), vol. XIII (2014), 699–744

  9. Esposito, P., Musso, M., Pistoia, A.: Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent. J. Differ. Equ. 227, 29–68 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kavian, O., Vogelius, M.: On the existence and “blow-up” of solutions to a two-dimensional nonlinear boundary-value problem arising in corrosion modelling. Proc. R. Soc. Edinb. Sect. A 133(1), 119–149 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, Y., Zhu, M.: Uniqueness theorems through the method of moving spheres. Duke Math. J. 80, 383–417 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Medville, K., Vogelius, M.: Blow up behaviour of planar harmonic functions satisfying a certain exponential Neumann boundary condition. SIAM J. Math. Anal. 36(6), 1772–1806 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pohozhaev, S.I.: The Sobolev embedding in the case \(pl = n\). In: Proceedings of Technical Science Conference on Advanced Science Research 1964–1965, Mathematics Section, 158–170, Moskov. Ènerget. Inst. Moscow (1965)

  14. Trudinger, N.S.: On embedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MATH  MathSciNet  Google Scholar 

  15. Wang, Y., Wei, L.: Multiple boundary bubbling phenomenon of solutions to a Neumann problem. Adv. Differ. Equ. 13(9–10), 829–856 (2008)

    MATH  Google Scholar 

  16. Wei, L.: Concentrating phenomena in some elliptic Neumann problem: asymptotic behavior of solutions. Commun. Pure Appl. Anal. 7(4), 925–946 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wei, J., Ye, D., Zhou, F.: Bubbling solutions for an anisotropic Emden–Fowler equation. Calc. Var. Partial Differ. Equ. 28, 217–247 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ye, D., Zhou, F.: A generalized two dimensional Emden–Fowler equation with exponential nonlinearity. Calc. Var. Partial Differ. Equ. 13, 141–158 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Musso.

Additional information

The research of the first author has been partly supported by Fundamental Research Funds for the Central Universities SWU114040, XDJK2015C042, and Postdoctoral Fondecyt Grant 3140403. The research of the second author has been partly supported by Fondecyt Grant 1120151 and Millennium Nucleus Center for Analysis of PDE, NC130017.

Appendix

Appendix

Proof of Lemma 2.5

We note that, on the boundary, we have

$$\begin{aligned} \frac{\partial H_{ij} }{\partial \nu }= & {} \alpha _{ij}\left( \varepsilon e^{u_j}-\frac{\partial u_j}{\partial \nu }\right) \\= & {} \alpha _{ij} \left( 2\varepsilon \mu _j\frac{1-\nu (\xi _j)\cdot \nu (x)}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2} +2\frac{(x-\xi _j)\cdot \nu (x)}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}\right) \end{aligned}$$

we have

$$\begin{aligned} \lim \limits _{\varepsilon \rightarrow 0}\frac{\partial H_{ij}}{\partial \nu } (x)=2\alpha _{ij}\frac{(x-\xi _j)\cdot \nu (x)}{|x-\xi _j|^2},\quad \ \forall \ x\ne \xi _j. \end{aligned}$$

On the other hand, the regular part of Green’s function H(xy) satisfies

$$\begin{aligned} \quad \left\{ \begin{array}{l@{\quad }l@{\quad }l} -\Delta H(x,y)-\nabla \log a(x)\nabla H(x,y)+H(x,y)\\ \qquad \qquad = \nabla \log a(x)\nabla (\log \frac{1}{|x-y|^2})-\log \frac{1}{|x-y|^2}\quad &{} \mathrm{in}\ \Omega ;\\ \frac{\partial H(x,y)}{\partial \nu } = 2\frac{(x-\xi _j)\cdot \nu (x)}{|x-\xi _j|^2}\quad \ &{} \mathrm{on}\ \partial \Omega . \end{array} \right. \end{aligned}$$
(5.1)

Set \(\tilde{z}_\varepsilon =H_{ij}(x)+\alpha _{ij}\log (2\mu _j\varepsilon ^2)-\alpha _{ij}H(x,\xi _j)\), then \(\tilde{z}_\varepsilon \) satisfies

$$\begin{aligned} \quad \left\{ \begin{array}{ll} -\Delta \tilde{z}_\varepsilon -\nabla \log a(x)\nabla \tilde{z}_\varepsilon +\tilde{z}_\varepsilon = \bar{f} \quad &{} \mathrm{in}\ \Omega ;\\ \frac{\partial \tilde{z}_\varepsilon }{\partial \nu }= \bar{h}\quad \ &{} \mathrm{on}\ \partial \Omega , \end{array} \right. \end{aligned}$$
(5.2)

where

$$\begin{aligned} \bar{f}= & {} \alpha _{ij}\left[ \log \frac{1}{|x-\xi _j|^2}-\log \frac{1}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}\right] \\&+\,\alpha _{ij}\nabla \log a\cdot \nabla \left( \log \frac{1}{|x-\xi _j|^2}-\log \frac{1}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}\right) , \end{aligned}$$

and

$$\begin{aligned} \bar{h}= \frac{\partial H_{ij}}{\partial \nu }-2\alpha _{ij}\frac{(x-\xi _j)\cdot \nu (x)}{|x-\xi _j|^2}. \end{aligned}$$

First, we claim that there is a positive constant C such that

$$\begin{aligned} \left\| \bar{h}\right\| _{L^q(\partial \Omega )}\le C(\varepsilon \mu _j)^{1/q},\quad \ \forall \ q>1, \end{aligned}$$
(5.3)

In fact,

$$\begin{aligned} \bar{h}= & {} \frac{\partial H_{ij}}{\partial \nu }-2\alpha _{ij}\frac{(x-\xi _j)\cdot \nu (x)}{|x-\xi _j|^2}\\= & {} \alpha _{ij}\left( 2\varepsilon \mu _j\frac{1-\nu (\xi _j)\cdot \nu (x)}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2} +2\frac{(x-\xi _j)\cdot \nu (x)}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}\right) -2\alpha _{ij}\frac{(x-\xi _j)\cdot \nu (x)}{|x-\xi _j|^2}\\= & {} 2\alpha _{ij}\varepsilon \mu _j\frac{1-\nu (\xi _j)\cdot \nu (x)}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2} +2\alpha _{ij}\varepsilon \mu _j\frac{(x-\xi _j)\cdot \nu (x)\left[ 2(x-\xi _j)\cdot \nu (x)-\varepsilon \mu _j\right] }{|x-\xi _j|^2|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}. \end{aligned}$$

Now, we observe that

$$\begin{aligned} |1-\nu (\xi _j)\cdot \nu (x)|\le C|x-\xi _j|^2,\quad \ |(x-\xi _j)\cdot \nu (x)|\le C|x-\xi _j|^2,\quad \ \forall \ x\in \partial \Omega . \end{aligned}$$

Hence,

$$\begin{aligned} \left| \frac{\partial H_{ij}}{\partial \nu }-2\alpha _{ij}\frac{(x-\xi _j)\cdot \nu (x)}{|x-\xi _j|^2}\right| \le C\varepsilon \mu _j +C\frac{\varepsilon |2(x-\xi _j)\cdot \nu (\xi _j)-\varepsilon \mu _j|}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}. \end{aligned}$$
(5.4)

For \(\rho >0\) small, we have

$$\begin{aligned} \left| \frac{\partial H_{ij}}{\partial \nu }-2\alpha _{ij}\frac{(x-\xi _j)\cdot \nu (x)}{|x-\xi _j|^2}\right| \le C\varepsilon \mu _j,\ x\ \ \text{ for }\ \ \forall \ |x-\xi _j|\ge \rho ,\ x\in \partial \Omega . \end{aligned}$$
(5.5)

Now let \(q>1\), we have

$$\begin{aligned}&\int _{B_\rho (\xi _j)\cap \partial \Omega }\left| \frac{\varepsilon \mu _j|2(x-\xi _j)\cdot \nu (\xi _j)-\varepsilon \mu _j|}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}\right| ^qdx\nonumber \\&\quad =C\varepsilon \mu _j\int _{B_{\rho /\varepsilon }(0)\cap \partial \Omega _\varepsilon }\left| \frac{2y\cdot \nu (0)-\mu _j}{y-\mu _j\nu (0)}\right| ^qd y\nonumber \\&\quad \le C\varepsilon \mu _j\int _0^{\rho /\varepsilon }\frac{1}{(1+s)^q}ds\le C \varepsilon \mu _j. \end{aligned}$$
(5.6)

Combining (5.4) with (5.5) and (5.6) we conclude that (5.3) holds.

Next, we show that for any \(1<q<2\),

$$\begin{aligned} \left\| \log \frac{1}{|x-\xi _j|^2}-\log \frac{1}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}\right\| _{L^q(\Omega )} \le C\varepsilon ^\alpha . \end{aligned}$$
(5.7)

In fact, for \(q\ge 1\), we write

$$\begin{aligned}&\left\| \log \frac{1}{|x-\xi _j|^2}-\log \frac{1}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}\right\| _{L^q(\Omega )}^q\nonumber \\&\quad =\int _{B_{10\varepsilon \mu _j}(\xi _j)\cap \Omega }\ldots \ + \int _{\Omega \backslash B_{10\varepsilon \mu _j}(\xi _j)}\ldots := I_1+I_2. \end{aligned}$$
(5.8)

Next we estimate \(I_1\) and \(I_2\). For \(I_1\), we observe that

$$\begin{aligned} \int _{B_{10\varepsilon \mu _j}(\xi _j)\cap \Omega }\left| \log \frac{1}{|x-\xi _j|^2}\right| ^qdx\le C\int _{0}^{C\varepsilon \mu _j}|\log r|^qrdr\le C(\varepsilon \mu _j)^2\left( \log \frac{1}{\varepsilon }\right) ^q, \end{aligned}$$

and the same bound is true for the integral of \(|\log \frac{1}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}|^q\) in \(B_{10\varepsilon \mu _j}(\xi _j)\cap \Omega \). Hence, we have

$$\begin{aligned} |I_1|\le C(\varepsilon \mu _j)^2\left( \log \frac{1}{\varepsilon }\right) ^q. \end{aligned}$$
(5.9)

For \(I_2\), if \(|x-\xi _j|\ge 10\varepsilon \mu _j\), we have

$$\begin{aligned} |x-\xi _j|\le |x-\xi _j-t\varepsilon \mu _j\nu (\xi _j)|+\varepsilon \mu _jx\le |x-\xi _j-t\varepsilon \mu _j\nu (\xi _j)|+\frac{1}{10}|x-\xi _j| \end{aligned}$$

for any \(t\in [0,1]\), then we have \(|x-\xi _j|\le C|x-\xi _j-t\varepsilon \mu _j\nu (\xi _j)|\). Using this fact, we can obtain

$$\begin{aligned}&\left| \log \frac{1}{|x-\xi _j|^2}-\log \frac{1}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}\right| \\&\quad \le C\sup \limits _{0\le t\le 1}\frac{C\varepsilon \mu _j}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|}\le \frac{C\varepsilon \mu _j}{|x-\xi _j|}. \end{aligned}$$

Thus for \(1<q<2\),

$$\begin{aligned} |I_1|\le C\varepsilon ^q\int _{10\varepsilon \mu _j}^Dr^{1-q}dr\le C(\varepsilon \mu _j)^q, \end{aligned}$$
(5.10)

where D is the diameter of \(\Omega \). Thus, combining (5.8) with (5.9) and (5.10) we obtain that (5.7) holds.

Finally, for any \(1<q<2\), we show that

$$\begin{aligned} \left\| \nabla \log a\nabla \left( \log \frac{1}{|x-\xi _j|^2}-\log \frac{1}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}\right) \right\| _{L^q(\Omega )} \le C(\varepsilon \mu _j)^{\frac{2-q}{q}}. \end{aligned}$$
(5.11)

In fact, for any \(1<q<2\), we write

$$\begin{aligned}&\left\| \nabla \left( \log \frac{1}{|x-\xi _j|^2}-\log \frac{1}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}\right) \right\| _{L^q(\Omega )}^q\nonumber \\&\quad =\int _{B_{10\varepsilon \mu _j}(\xi _j)\cap \Omega }\cdots +\int _{\Omega \backslash B_{10\varepsilon \mu _j}(\xi _j)}\cdots \nonumber \\&\quad := I_3+I_4. \end{aligned}$$
(5.12)

For \(I_3\), we have

$$\begin{aligned} |I_3|\le & {} \int _{B_{10\varepsilon \mu _j}(\xi _j)\cap \Omega }\left| \nabla \log \frac{1}{|x-\xi _j|^2}\right| ^qdx\nonumber \\&+\int _{B_{10\varepsilon \mu _j}(\xi _j)\cap \Omega }\left| \nabla \log \frac{1}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^2}\right| ^qdx\nonumber \\= & {} C\int _{B_{10\varepsilon \mu _j}(\xi _j)\cap \Omega }\left| \log \frac{1}{|x-\xi _j|^q}\right| ^qdx\nonumber \\&+\, C\int _{B_{10\varepsilon \mu _j}(\xi _j)\cap \Omega }\left| \log \frac{1}{|x-\xi _j-\varepsilon \mu _j\nu (\xi _j)|^q}\right| ^qdx\nonumber \\\le & {} C(\varepsilon \mu _j)^{2-q}. \end{aligned}$$
(5.13)

Moreover, we have

$$\begin{aligned} I_4\le & {} \int _{\Omega \backslash B_{10\varepsilon \mu _j}(\xi _j)\cap \Omega }\left| \frac{2\varepsilon \mu _j}{|x-\xi _j|(|x-\xi _j|-\varepsilon \mu _j)}\right| ^qdx\nonumber \\\le & {} C\int _{10\varepsilon \mu _j}^{D}\frac{(\varepsilon \mu _j)^q}{(r-\varepsilon \mu _j)^{2q-1}}dr \le C(\varepsilon \mu _j)^{2-q}. \end{aligned}$$
(5.14)

From (5.12)–(5.14) to get (5.11).

Therefore by elliptic regularity theory, for problem (5.2) we obtain

$$\begin{aligned} \Vert z_\varepsilon \Vert _{W^{1+s,q}(\Omega )}\le C(\varepsilon \mu _j)^{\frac{2-q}{q}} \end{aligned}$$
(5.15)

By the Morrey embedding we obtain

$$\begin{aligned} \Vert z_\varepsilon \Vert _{C^\beta }(\bar{\Omega })\le C \varepsilon ^{\beta } \end{aligned}$$

for any \(0<\beta <1-\frac{1}{q}\). This finishes the proof of the Lemma. \(\square \)

Proof of (2.21)

We shall prove

$$\begin{aligned} \alpha _{1j}=\log (2\mu _j). \end{aligned}$$
(5.16)

In fact, first we observe that \(f_1\) is a symmetric function for any choice of \(\alpha _{1j}\), hence

$$\begin{aligned} \int _{\partial \mathbb {R}^2_+}e^{w_{\mu _j}}f_1z_{1\mu _j}=0. \end{aligned}$$

Next, we chose parameter \(\alpha _{1j}\) such that the other orthogonality condition satisfies. Since

$$\begin{aligned}&\int _{\partial \mathbb {R}^2_+}e^{w_{\mu _j}}f_1z_{0\mu _j} \\&\quad = -\frac{1}{\mu _j}\int _{\partial \mathbb {R}^2_+}e^{w_{\mu _j}}\left( \alpha _{1j}(w_{\mu _j}-1)+w_{\mu _j}+\frac{1}{2}(w_{\mu _j})^2\right) \left( y\cdot \nabla w_{\mu _j}(y)+1\right) \\&\quad =-\frac{1}{\mu _j}\alpha _{1j}\int _{-\infty }^\infty \left( e^{w_{\mu _j}(y_1,0)}\left( w_{\mu _j}(y_1,0)-1\right) \frac{\partial w_{\mu _j}}{\partial y_1}(y_1,0)y_1\right. \\&\qquad \left. +\, e^{w_{\mu _j}(y_1,0)}\left( w_{\mu _j}(y_1,0)-1\right) \right) dy_1\\&\qquad -\frac{1}{\mu _j}\int _{-\infty }^\infty \left( e^{w_{\mu _j}(y_1,0)}w_{\mu _j}(y_1,0)\frac{\partial w_{\mu _j}}{\partial y_1}(y_1,0)y_1+e^{w_{\mu _j}(y_1,0)}w_{\mu _j}(y_1,0)\right) dy_1\\&\qquad -\frac{1}{\mu _j}\int _{-\infty }^\infty \left( e^{w_{\mu _j}(y_1,0)}\frac{(w_{\mu _j})^2}{2}(y_1,0)\frac{\partial w_{\mu _j}}{\partial y_1}(y_1,0)y_1+e^{w_{\mu _j}(y_1,0)}\frac{(w_{\mu _j})^2}{2}(y_1,0)\right) dy_1\\&\quad =-\frac{1}{\mu _j}\left[ \alpha _{1j}\int _{-\infty }^\infty e^{w_{\mu _j}(y_1,0)} dy_1+\int _{-\infty }^\infty e^{w_{\mu _j}(y_1,0)}w_{\mu _j}(y_1,0) dy_1\right] . \end{aligned}$$

Thus we need to choose \(\alpha _{1j}\) such that

$$\begin{aligned} \alpha _{1j}\int _{-\infty }^\infty e^{w_{\mu _j}(y_1,0)} dy_1+\int _{-\infty }^\infty e^{w_{\mu _j}(y_1,0)}w_{\mu _j}(y_1,0) dy_1=0. \end{aligned}$$
(5.17)

Since

$$\begin{aligned} \int _{-\infty }^\infty e^{w_{\mu _j}(y_1,0)} dy_1=\int _{-\infty }^\infty \frac{2\mu _j}{y_1^2+\mu _j^2}\ dy_1=2\int _{-\infty }^\infty \frac{1}{t^2+1}\ dt=2\pi , \end{aligned}$$
(5.18)

and

$$\begin{aligned}&\int _{-\infty }^\infty e^{w_{\mu _j}(y_1,0)}w_{\mu _j}(y_1,0) dy_1=\int _{-\infty }^\infty \frac{2\mu _j}{y_1^2+\mu _j^2}\log \frac{2\mu _j}{y_1^2+\mu _j^2}\ dy_1\nonumber \\&\quad =2\int _{-\infty }^\infty \frac{1}{t^2+1}\left[ \log \frac{1}{t^2+1}+\log (2\mu _j^{-1})\right] \ dt=-2\pi \log (2\mu _j). \end{aligned}$$
(5.19)

Therefore, from (5.17), (5.18) and (5.19) we get that \(\alpha _{1j}\) satisfies (2.21). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Musso, M. Multiple blow-up solutions for an anisotropic 2-dimensional nonlinear Neumann problem. Math. Z. 281, 849–875 (2015). https://doi.org/10.1007/s00209-015-1510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1510-z

Keywords

Navigation