Skip to main content
Log in

Simplicial complexes and Macaulay’s inverse systems

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let Δ be a simplicial complex on V = {x 1, . . . , x n }, with Stanley–Reisner ideal \({I_{\Delta}\subseteq R=k[x_1,\ldots, x_n]}\) . The goal of this paper is to investigate the class of artinian algebras \({A=A(\Delta,a_1,\ldots,a_n)= R/(I_{\Delta},x_1^{a_1},\ldots,x_n^{a_n})}\) , where each a i ≥ 2. By utilizing the technique of Macaulay’s inverse systems, we can explicitly describe the socle of A in terms of Δ. As a consequence, we determine the simplicial complexes, that we will call levelable, for which there exists a tuple (a 1, . . . , a n ) such that A(Δ, a 1, . . . , a n ) is a level algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aramova A., Herzog J., Hibi T.: Squarefree lexsegment ideals. Math. Z. 228, 353–378 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boij, M.: Artin Level Algebras. Doctoral Dissertation. Royal Institute of Technology (KTH), Stockholm (1994)

  3. Bruns W., Herzog J.: Cohen-Macaulay rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  4. Cocoa Team, CoCoA: a system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it

  5. Faridi S.: The facet ideal of a simplicial complex. Manuscripta Math. 109, 159–174 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Geramita, A.V.: Inverse systems of fat points: waring’s problem, secant varieties and veronese varieties and parametric spaces of Gorenstein ideals. In: Queen’s Papers in Pure and Applied Mathematics, No. 102. The Curves Seminar at Queen’s, vol. X, pp. 3–114 (1996)

  7. Geramita, A.V., Harima, T., Migliore, J., Shin, Y.S.: The Hilbert function of a level algebra. Mem. Am. Math. Soc. 186(872) vi+139 pp (2007)

  8. Herzog J., Hibi T.: Upper bounds for the number of facets of a simplicial complex. Proc. Am. Math. Soc. 125, 1579–1583 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Herzog J., Hibi T.: Level rings arising from meet-distributive meet-semilattices. Nagoya Math. J. 181, 29–39 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Herzog J., Hibi T., Vladoiu M.: Ideals of fiber type and polymatroids. Osaka J. Math. 42(4), 807–829 (2005)

    MATH  MathSciNet  Google Scholar 

  11. Hibi T.: Level rings and algebras with straightening laws. J. Algebra 117(2), 343–362 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hibi T.: Plane graphs and Cohen-Macaulay posets. Eur. J. Combin. 10(6), 537–542 (1989)

    MATH  MathSciNet  Google Scholar 

  13. Iarrobino, A., Kanev, V.: Power sums, Gorenstein algebras, and determinantal loci. Springer Lectures Notes in Mathematics, No. 1721. Springer, Heidelberg (1999)

  14. Klivans, A.R., Shpilka, A.: Learning arithmetic circuits via partial derivatives. In: Proc. 16th Annual Conference on Computational Learning Theory, Morgan Kaufmann Publishers, pp. 463–476 (2003)

  15. Nisam, N., Wigderson, A.: Lower bounds on arithmetic circuits via partial derivatives. Comput. Complexity 6(3), 217–234 (1996/1997)

    Google Scholar 

  16. Simis A., Vasconcelos W., Villarreal R.: On the ideal theory of graphs. J. Algebra 167, 389–416 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stanley, R.: Cohen-Macaulay complexes, In: Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976). NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci., vol. 31, pp. 51–62. Reidel, Dordrecht (1977)

  18. Stanley R.: Hilbert functions of graded algebras. Adv. Math. 28, 57–83 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stanley, R.: Combinatorics and commutative algebra, 2nd edn. Progress in Mathematics, vol. 41. Birkhäuser Boston, Inc., Boston (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Zanello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Tuyl, A., Zanello, F. Simplicial complexes and Macaulay’s inverse systems. Math. Z. 265, 151–160 (2010). https://doi.org/10.1007/s00209-009-0507-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0507-x

Keywords

Mathematics Subject Classification (2000)

Navigation