Skip to main content
Log in

Doubling measures, monotonicity, and quasiconformality

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We construct quasiconformal mappings in Euclidean spaces by integration of a discontinuous kernel against doubling measures with suitable decay. The differentials of mappings that arise in this way satisfy an isotropic form of the doubling condition. We prove that this isotropic doubling condition is satisfied by the distance functions of certain fractal sets. Finally, we construct an isotropic doubling measure that is not absolutely continuous with respect to the Lebesgue measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aimar H., Forzani L. and Naibo V. (2002). Rectangular differentiation of integrals of Besov functions. Math. Res. Lett. 9(2–3): 173–189

    MATH  Google Scholar 

  2. Alberti G. and Ambrosio L. (1999). A geometrical approach to monotone functions in \(\mathbb{R}^n\). Math. Z. 230(2): 259–316

    Article  MATH  Google Scholar 

  3. Beurling A. and Ahlfors L.V. (1956). The boundary correspondence under quasiconformal mappings. Acta Math. 96: 125–142

    Article  MATH  Google Scholar 

  4. Bishop, C.J.: An A 1 weight not comparable with any quasiconformal Jacobian. In: Canary, R., Gilman, J., Heinonen, J., Masur, H. (eds.) Proceedings of the 2005 Ahlfors-Bers Colloquium, Contemp. Math. Amer. Math. Soc., Providence (in press)

  5. Bonk M., Heinonen J. and Rohde S. (2001). Doubling conformal densities. J. Reine Angew. Math. 541: 117–141

    MATH  Google Scholar 

  6. Bonk, M., Heinonen, J., Saksman, E.: The quasiconformal Jacobian problem. In: Abikoff, W., Haas, A. (eds.) In the tradition of Ahlfors and Bers, III, Contemp. Math., 355, 77–96, Amer. Math. Soc., Providence (2004)

  7. Bonk, M., Heinonen, J., Saksman, E.: Logarithmic potentials, quasiconformal flows, and , preprint (2006)

  8. Buckley S.M., Hanson B. and MacManus P. (2001). Doubling for general sets. Math. Scand. 88(2): 229–245

    MATH  Google Scholar 

  9. David, G., Semmes, S.: Strong A weights, Sobolev inequalities and quasiconformal mappings. In: Sadosky C. (ed.), Analysis and partial differential equations, 101–111, Lect. Notes Pure Appl. Math. 122, 101–111 (1990)

  10. Gehring F.W. (1973). The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130: 265–277

    Article  MATH  Google Scholar 

  11. Gutiérrez C.E. (2001). The Monge-Ampère equation. Birkhäuser, Boston

    MATH  Google Scholar 

  12. Heinonen J. (2001). Lectures on analysis on metric spaces. Springer, Heidelberg

    MATH  Google Scholar 

  13. Jerison D.S. and Kenig C.E. (1982). Hardy spaces, A and singular integrals on chord-arc domains. Math. Scand. 50(2): 221–247

    MATH  Google Scholar 

  14. Kovalev, L.V.: Quasiconformal geometry of monotone mappings. J. London Math. Soc. (in press)

  15. Kovalev L.V. and Maldonado D. (2005). Mappings with convex potentials and the quasiconformal Jacobian problem. Illinois J. Math. 49(4): 1039–1060

    MATH  Google Scholar 

  16. Laakso T.J. (2002). Plane with A -weighted metric not bi-Lipschitz embeddable to \(\mathbb{R}^n\). Bull. London Math. Soc. 34(6): 667–676

    Article  MATH  Google Scholar 

  17. Rohde S. (2001). Quasicircles modulo bilipschitz maps. Rev. Mat. Iberoamericana 17(3): 643–659

    MATH  Google Scholar 

  18. Semmes S. (1996). On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A -weights. Rev. Mat. Iberoamericana 12(2): 337–410

    MATH  Google Scholar 

  19. Sobolevskii P.E. (1957). On equations with operators forming an acute angle. Dokl. Akad. Nauk SSSR (N.S.) 116: 754–757

    Google Scholar 

  20. Staples S.G. (1992). Doubling measures and quasiconformal maps. Comment. Math. Helv. 67(1): 119–128

    Article  MATH  Google Scholar 

  21. Stein E.M. (1970). Singular integrals and differentiability properties of functions. Princeton University Press, Princeton

    MATH  Google Scholar 

  22. Stein E.M. (1993). Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals. Princeton University Press, Princeton

    MATH  Google Scholar 

  23. Tukia P. (1981). Extension of quasisymmetric and Lipschitz embeddings of the real line into the plane. Ann. Acad. Sci. Fenn. Ser. A I Math. 6(1): 89–94

    Google Scholar 

  24. Tukia P. and Väisälä J. (1980). Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5(1): 97–114

    Google Scholar 

  25. Tyson J.T. and Wu J.-M. (2005). Characterizations of snowflake metric spaces. Ann. Acad. Sci. Fenn. Math. 30(2): 313–336

    MATH  Google Scholar 

  26. Väisälä, J.: Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math., vol 229. Springer, Berlin (1971)

  27. Zeidler E. (1990). Nonlinear functional analysis and its applications II/B. Nonlinear monotone operators. Springer, Heidelberg

    MATH  Google Scholar 

  28. Zygmund A. (2002). Trigonometric Series. Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Kovalev.

Additional information

L.V.K. was supported by an NSF Young Investigator award under grant DMS 0601926. J.-M.W. was supported by the NSF grant DMS 0400810.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalev, L.V., Maldonado, D. & Wu, JM. Doubling measures, monotonicity, and quasiconformality. Math. Z. 257, 525–545 (2007). https://doi.org/10.1007/s00209-007-0132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0132-5

Mathematics Subject Classification (2000)

Navigation