Skip to main content
Log in

The asymptotic p-Poisson equation as \(p \rightarrow \infty \) in Carnot-Carathéodory spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we study the asymptotic behavior of solutions to the subelliptic p-Poisson equation as \(p\rightarrow +\infty \) in Carnot-Carathéodory spaces. In particular, introducing a suitable notion of differentiability, extend the celebrated result of Bhattacharya et al. (Rend Sem Mat Univ Politec Torino Fascicolo Speciale 47:15–68, 1989) and we prove that limits of such solutions solve in the sense of viscosity a hybrid first and second order PDE involving the \(\infty \)-Laplacian and the Eikonal equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Not applicable.

References

  1. Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6(6), 551–561 (1967)

    Article  MathSciNet  Google Scholar 

  2. Aronsson, G.: On the partial differential equation \(u_x^2u_{xx}+2u_xu_yu_{xy}+u^2_yu_{yy}=0\). Ark. Mat. 7(5), 395–425 (1968)

    Article  MathSciNet  Google Scholar 

  3. Aronsson, G.: Construction of singular solutions to the \(p\)-harmonic equation and its limit equation for \(p = \infty \). Manuscr. Math. 56, 135–158 (1986)

    Article  MathSciNet  Google Scholar 

  4. Aronsson, G., Crandall, M., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. 41, 439–505 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Basel (1997)

    Book  Google Scholar 

  6. Barron, N., Jensen, R., Wang, C.Y.: The Euler equation and absolute minimizers of \(L^\infty \) functionals. Arch. Ration. Mech. Anal. 157(4), 255–283 (2001)

    Article  MathSciNet  Google Scholar 

  7. Bhattacharya, T., DiBenedetto, E., Manfredi, J.: Limits as \(p\rightarrow \infty \) of \(\Delta _pu_p=f\) and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino, special issue, Some topics in nonlinear PDEs (Torin, 1989), 15–68 (1989)

  8. Bieske, T.: A sub-Riemannian maximum principle and its application to the \(p\)-Laplacian in Carnot groups. Ann. Acad. Sci. Fenn. Math. 37(1), 119–134 (2012)

    Article  MathSciNet  Google Scholar 

  9. Bieske, T.: Equivalence of weak and viscosity solution to the \(p\)-Laplace equation in the Heisenberg group. Ann. Acad. Sci. Fenn. Math. 31, 363–379 (2006)

    MathSciNet  Google Scholar 

  10. Bieske, T.: Lipschitz extensions on generalized Grushin spaces. Mich. Math. J. 53(1), 3–31 (2005)

    Article  MathSciNet  Google Scholar 

  11. Bieske, T.: On \(\infty \)-harmonic functions on the Heisenberg group. Commun. Partial Differ. Equ. 27, 727–761 (2002)

    Article  MathSciNet  Google Scholar 

  12. Bieske, T.: Properties of infinite harmonic functions of Grushin-type spaces. Rocky Mt. J. Math. 39(3), 729–756 (2009)

    Article  MathSciNet  Google Scholar 

  13. Bieske, T.: Properties of infinite harmonic functions relative to Riemannian vector fields. Matematiche (Catania) 63(2), 19–37 (2008)

    MathSciNet  Google Scholar 

  14. Bieske, T., Capogna, L.: The Aronsson–Euler Lagrange equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathéodory metrics. Trans. Am. Math. Soc. 357(2), 795–823 (2004)

    Article  Google Scholar 

  15. Bjorn, A., Bjorn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, vol. 17. European Mathematical Society (EMS), Zürich (2011)

    Book  Google Scholar 

  16. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science+Business Media, New York (2011)

    Book  Google Scholar 

  17. Capogna, L., Danielli, D., Garofalo, N.: An embedding theorem and the Harnack inequality for nonlinear subelliptic equations. Commun. Partial Differ. Equ. 18(9–10), 1765–1794 (1993)

    Article  MathSciNet  Google Scholar 

  18. Champion, T., De Pascale, L.: Principles of comparison with distance functions for absolute minimizers. J. Convex Anal. 14(3), 515–541 (2007)

    MathSciNet  Google Scholar 

  19. Clarke, F.: Methods of Dynamic and Nonsmooth Optimization. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 57. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  20. Crandall, M.: An efficient derivation of the Aronsson equation. Arch. Rational Mech. Anal. 167(4), 271–279 (2003)

    Article  MathSciNet  Google Scholar 

  21. Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  22. Crandall, M., Wang, C., Yu, Y.: Derivation of the Aronsson equation for \(C^1\) Hamiltonians. Trans. Am. Math. Soc. 361(1), 103–124 (2009)

    Article  Google Scholar 

  23. Dragoni, F., Manfredi, J., Vittone, D.: Weak Fubini property and \(\infty \)-harmonic functions in Riemannian and subriemannian manifolds. Trans. Am. Math. Soc. 365(2), 837–859 (2013)

    Article  Google Scholar 

  24. Durand-Cartagena, E., Jaramillo, J.A., Shanmugalingam, N.: Existence and uniqueness of \(\infty \)-harmonic functions under assumption of \(\infty \)-Poincaré inequality. Mathematische Annalen 374, 881–906 (2018)

    Article  Google Scholar 

  25. Ferrari, F., Manfredi, J.J.: Estimates for the \(\infty \)-Laplacian relative to vector fields. https://arxiv.org/abs/2106.11183

  26. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press/University of Tokyo Press, Princeton/Tokyo (1982)

    Google Scholar 

  27. Franchi, B., Serapioni, R.P., Serra Cassano, F.: Meyers–Serrin type theorems and relaxation of variational integrals depending on vector fields. Houst. J. Math. 22, 859–889 (1996)

    MathSciNet  Google Scholar 

  28. Garofalo, N., Nhieu, D.: Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces. Journal d’Analyse Mathématique 74, 67–97 (1998)

    Article  MathSciNet  Google Scholar 

  29. Gromov, M.: Carnot-Carathéodory spaces seen from within. In: Bellaïche, A., Risler, J.J. (eds.) Sub-Riemannian Geometry. Progress in Mathematics, vol. 144. Birkhäuser, Basel (1996)

    Google Scholar 

  30. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev Spaces on Metric Measure Spaces. New Mathematical Monographs, vol. 27. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  31. Jensen, R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123(1), 51–74 (1993)

    Article  MathSciNet  Google Scholar 

  32. Jerison, D.: The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. I. J. Funct. Anal. 43(1), 97–142 (1981)

    Article  MathSciNet  Google Scholar 

  33. Jerison, D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53, 503–523 (1986)

    Article  MathSciNet  Google Scholar 

  34. Juutinen, P., Shanmugalingam, N.: Equivalence of AMLE, strong AMLE, and comparison with cones in metric measure spaces. Math. Nachr. 279(9–10), 1083–1098 (2006)

    Article  MathSciNet  Google Scholar 

  35. Leoni, G.: A First Course in Sobolev Spaces. American Mathematical Society, Providence (2009)

    Google Scholar 

  36. Lindquist, P.: Notes on the Stationary \(p\)-Laplace Equation. Briefs in Mathematics, Springer, Cham (2019)

    Book  Google Scholar 

  37. Liu, Q., Shanmugalingam, N., Zhou, X.: Equivalence of solutions of Eikonal equation in metric spaces. J. Differ. Eq. 272, 979–1014 (2021)

    Article  MathSciNet  Google Scholar 

  38. Lu, G.: Embedding theorems on Campanato–Morrey spaces for vector fields on Hörmander type. Approx. Theory Appl. (N.S.) 14(1), 69–80 (1998)

    Article  MathSciNet  Google Scholar 

  39. Maione, A., Pinamonti, A., Serra Cassano, F.: \(\Gamma \)-convergence for functionals depending on vector fields. II. Convergence of minimizers. SIAM J. Math Anal. 54(6), 5761–5791 (2022)

    Article  MathSciNet  Google Scholar 

  40. Margulis, G.A., Mostow, G.D.: The differential of a quasi-conformal mapping of a Carnot-Carathéodory space. Geom. Funct. Anal. 5(2), 402–433 (1995)

    Article  MathSciNet  Google Scholar 

  41. Medina, M., Ochoa, P.: On viscosity and weak solutions for non-homogeneous \(p\)-Laplace equations. Adv. Nonlinear Anal. 8, 468–481 (2019)

    Article  MathSciNet  Google Scholar 

  42. Monti, R.: Distances, boundaries and surface measures in Carnot-Carathéodory spaces. PhD thesis, Università di Trento (2001)

  43. Nagel, A., Stein, E., Wainger, S.: Balls and metrics defined by vector fields. I. Basic properties. Acta Math. 155(1–2), 103–147 (1985)

    Article  MathSciNet  Google Scholar 

  44. Pansu, P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. (French) [Carnot-Carathéodory metrics and quasi-isometries of rank-one symmetric spaces]. Ann. Math. (2) 129(1), 1–60 (1989)

    Article  MathSciNet  Google Scholar 

  45. Pinamonti, A., Verzellesi, S., Wang, C.: The Aronsson equation for absolute minimizers of supremal functionals in Carnot-Carathéodory spaces. Bull. Lond. Math. Soc. 55(2), 998–1018 (2023)

    Article  MathSciNet  Google Scholar 

  46. Rothschild, L., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  47. Serra Cassano, F.: Some topics of geometric measure theory in Carnot groups. In: Barilari, D., Boscain, U., Sigalotti, M. (eds.) Geometry, Analysis and Dynamics on Sub-Riemannian Manifolds, vol. 1, pp. 1–121. European Mathematical Society, Zürich (2016)

    Google Scholar 

  48. Soravia, P.: Viscosity and almost everywhere solutions of first-order Carnot-Carathéodory Hamilton–Jacobi equations. Bollettino UMI Ser. 9 3(2), 391–406 (2010)

    Google Scholar 

  49. Wang, C.: The Aronsson equation for absolute minimizers of \(L^\infty \)-functionals associated with vector fields satisfying Hörmander condition. Tran. Am. Math. Soc. 359(1), 91–113 (2007)

    Article  Google Scholar 

  50. Wang, C., Yu, Y.: Aronsson’s equations on Carnot-Carathéodory spaces. Ill. J. Math. 52(3), 757–772 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Nages Shanmugalingam for many useful conversations and suggestions. The authors would also like to thank the anonymous referee for their precise and useful corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Capogna.

Additional information

In Memory of Emmanuele DiBenedetto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L.C. was partially supported by the National Science Foundation award DMS1955992. G.G. was partially supported by INdAM-GNAMPA Project 2022 “Analisi geometrica in strutture subriemanniane”. A.P. was partially supported by INdAM under the INdAM-GNAMPA Project 2022 “Problemi al bordo e applicazioni geometriche”. A.P., G.G. and S.V. were supported through funding from the University of Trento.

Appendix

Appendix

As already pointed out, Proposition 2.14 can still be proved assuming

(D1):

\((\Omega ,d_\Omega )\) is a Carnot-Carathéodory space,

(D2):

\(d_\Omega \) is continuous with respect to the Euclidean topology,

(LIC):

The vectors \(X_1(x),\ldots ,X_m(x)\) are linearly independent for any \(x\in \Omega \)

instead of (LIC) and (2.4). The previous set of conditions embraces many relevant families of vector fields, such as for instance Carnot Groups. However, when considering the two sets of hypotheses given by the Hörmander condition and (D1), (D2), (LIC), one can show that neither of the two implies the other. Indeed, from one hand it is well known that the Grushin plane, i.e. \({\mathbb {R}}^2\) equipped with the Carnot-Carathéodory distance generated by the vector fields

$$\begin{aligned} X=\frac{\partial }{\partial x}\qquad Y=x\frac{\partial }{\partial y}, \end{aligned}$$

satisfies the Hörmander condition, while X and Y are clearly linearly dependent in \(\{(0,y)\ |\ y\in {\mathbb {R}}\}\). On the other hand, there are examples of (even smooth) families of vector fields satisfying (D1), (D2), (LIC) which does not satisfies the Hörmander condition. Let us consider the two linearly independent vector fields XY defined on \({\mathbb {R}}^3\) by

$$\begin{aligned} X=\frac{\partial }{\partial x}\qquad Y=\frac{\partial }{\partial y}+\varphi (x)\frac{\partial }{\partial z}, \end{aligned}$$

where \(\varphi (x):=\psi (x)+\psi (-x)\) and \(\psi :{\mathbb {R}}\rightarrow {\mathbb {R}}\) is defined by

$$\begin{aligned} \psi (x)= {\left\{ \begin{array}{ll}e^{-\frac{1}{x}}&{}\text { if }x>0\\ 0 &{}\text { otherwise}. \end{array}\right. } \end{aligned}$$

Since \(\varphi ^{(k)}(0)=0\) for any \(k\in {\mathbb {N}}\), it is easy to see that

$$\begin{aligned}{}[X,[\ldots ,[X,Y]\ldots ](0,y,z)=[Y,[\ldots ,[X,Y]\ldots ](0,y,z)=0 \end{aligned}$$

for any \(y,z\in {\mathbb {R}}\) so XY do not satisfy the Hörmander condition in \(\{(0,y,z)\ |\ y,z\in {\mathbb {R}}\}\).

It is not difficult to show that they induce a Carnot-Carathéodory distance d on \({\mathbb {R}}^3\), and that the identity map

$$\begin{aligned} Id :({\mathbb {R}}^3,d_e)\longrightarrow ({\mathbb {R}}^3,d) \end{aligned}$$

is continuous. Indeed, let \(A=(x,y,z)\) and \(B=(x_1,y_1,z_1)\) in \({\mathbb {R}}^3\). We construct a horizontal curve joining them whose horizontal length tends to zero as A tends to B in the Euclidean topology. First, notice that moving along the X direction the induced Carnot-Carathéodory distance is comparable with the Euclidean one. Hence, without loss of generality, we can assume that \(x=x_1=0\). Moreover, since \(Y=\frac{\partial }{\partial y}\) on \(\{x=0\}\), then moving along the Y direction inside \(\{x=0\}\) the induced Carnot-Carathéodory distance is comparable with the Euclidean one. Hence we assume that \(y_1=y\). The last step is to join (0, yz) and \((0,y, z_1)\). We assume, without loss of generality, that \(z_1>z\). Let us set

$$\begin{aligned} \delta :=-\frac{1}{\log (\sqrt{z_1-z})} \end{aligned}$$

then \(\delta \rightarrow 0^+\) as \(z_1\rightarrow z\). Let us define the curves \(\gamma _1,\ldots ,\gamma _4:[0,1]\rightarrow {\mathbb {R}}^3\) by

$$\begin{aligned} \gamma _1(t)= & {} (0,y,z)+t(\delta ,0,0), \\ \gamma _2(t)= & {} (\delta ,y,z)+t\left( 0,\frac{z_1-z}{\varphi (\delta )},z_1-z\right) , \\ \gamma _3(t)= & {} \left( \delta ,y+\frac{z-z_1}{\varphi (\delta )},z_1\right) +t(-\delta ,0,0) \end{aligned}$$

and

$$\begin{aligned} \gamma _4(t)=\left( 0,y+\frac{z_1-z}{\varphi (\delta )},z_1\right) +t\left( 0,\frac{z-z_1}{\varphi (\delta )},0\right) \end{aligned}$$

it is easy to see that they are horizontal and that they connect (0, yz) and \((0,y,z_1)\). Moreover, a quick computation shows that

$$\begin{aligned} d((0,y,z),(0,y,z_1))\le 2\delta +\frac{z_1-z}{\varphi (\delta )}=-\frac{2}{\log (\sqrt{z_1-z})}+\sqrt{z_1-z}. \end{aligned}$$

As the right hand side tends to zero as \(z_1\rightarrow z\), the conclusion follows.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capogna, L., Giovannardi, G., Pinamonti, A. et al. The asymptotic p-Poisson equation as \(p \rightarrow \infty \) in Carnot-Carathéodory spaces. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02805-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02805-z

Mathematics Subject Classification

Navigation