Skip to main content
Log in

Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrödinger equation

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

A polynomial-in-time growth bound is established for global Sobolev \(H^s({\mathbb {T}})\) solutions to the derivative nonlinear Schrödinger equation on the circle with \(s>1\). These bounds are derived as a consequence of a nonlinear smoothing effect for an appropriate gauge-transformed version of the periodic Cauchy problem, according to which a solution with its linear part removed possesses higher spatial regularity than the initial datum associated with that solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The manuscript has no associated data.

References

  1. Babin, A., Ilyin, I., Titi, E.: On the regularization mechanism for the periodic Korteweg–de Vries equation. Commun. Pure Appl. Math. 64, 591–648 (2011)

    MathSciNet  Google Scholar 

  2. Bahouri, H., Perelman, G.: Global well-posedness for the derivative nonlinear Schrödinger equation (2020). arXiv:2012.01923

  3. Biagioni, H., Linares, F.: Ill-posedness for the derivative Schrödinger and generalized Benjamin–Ono equations. Trans. Am. Math. Soc. 353, 3649–3659 (2001)

    Google Scholar 

  4. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993)

    MathSciNet  Google Scholar 

  5. Bourgain, J.: On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE. Int. Math. Res. Not. 1996, 277–304 (1996)

    MathSciNet  Google Scholar 

  6. Bourgain, J.: On growth in time of Sobolev norms of smooth solutions of nonlinear Schrödinger equations in \(R^d\). J. Anal. Math. 72, 299–310 (1997)

    MathSciNet  Google Scholar 

  7. Chung, J., Guo, Z., Kwon, S., Oh, T.: Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 1273–1297 (2017)

    ADS  MathSciNet  Google Scholar 

  8. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: A refined global well-posedness result for Schrödinger equations with derivative. SIAM J. Math. Anal. 34, 64–86 (2002)

    MathSciNet  Google Scholar 

  9. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm. Discrete Contin. Dyn. Syst. 9, 31–54 (2003)

    MathSciNet  Google Scholar 

  10. Colliander, J., Kwon, S., Oh, T.: A remark on normal forms and the “upside-down’’ I-method for periodic NLS: growth of higher Sobolev norms. J. Anal. Math. 3, 55–82 (2012)

    MathSciNet  Google Scholar 

  11. Correia, S., Silva, J.: Nonlinear smoothing for dispersive PDE: a unified approach. J. Differ. Equ. 269, 4253–4285 (2020)

    ADS  MathSciNet  Google Scholar 

  12. Deng, Y., Nahmod, A., Yue, H.: Optimal local well-posedness for the periodic derivative nonlinear Schrödinger equation. Commun. Math. Phys. (2020). https://doi.org/10.1007/s00220-020-03898-8

  13. Erdogan, M., Gürel, T., Tzirakis, N.: The derivative nonlinear Schrödinger equation on the half line. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 1947–1973 (2018)

    ADS  MathSciNet  Google Scholar 

  14. Erdogan, M., Gürel, T., Tzirakis, N.: Smoothing for the fractional Schrödinger equation on the torus and the real line. Indiana Univ. Math. J. 68, 369–392 (2019)

    MathSciNet  Google Scholar 

  15. Erdogan, M., Tzirakis, N.: Global smoothing for the periodic KdV evolution. Int. Math. Res. Not. 2013, 4589–4614 (2013)

    MathSciNet  Google Scholar 

  16. Erdogan, M., Tzirakis, N.: Smoothing and global attractors for the Zakharov system on the torus. Anal. PDE 6, 723–750 (2013)

    MathSciNet  Google Scholar 

  17. Erdogan, M., Tzirakis, N.: Regularity properties of the cubic nonlinear Schrödginer equation on the half line. J. Funct. Anal. 271, 2539–2568 (2016)

    MathSciNet  Google Scholar 

  18. Fukaya, N., Hayashi, M., Inui, T.: A sufficient condition for global existence of solutions to a generalized derivative nonlinear Schrödinger equation. Anal. PDE 10, 1149–1167 (2017)

    MathSciNet  Google Scholar 

  19. Fukuda, I., Tsutsumi, M.: On solutions of the derivative nonlinear Schroödinger equation: existence and uniqueness theorems. Funkcial. Ekvac. 23, 259–277 (1980)

    MathSciNet  Google Scholar 

  20. Fukuda, I., Tsutsumi, M.: On solutions of the derivative nonlinear Schrödinger equation II. Funkcial. Ekvac. 24, 85–94 (1981)

    MathSciNet  Google Scholar 

  21. Gérard, P., Kappeler, T., Topalov, P.: Sharp well-posedness of the Benjamin-Ono equation in \(H^s(\mathbb{T},\mathbb{R})\) and qualitative properties of its solution (2020). arXiv:2004.04857

  22. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 2D quadratic Schrödinger equations. Int. Math. Res. Not. 2009, 414–432 (2009)

    Google Scholar 

  23. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the Gravity Water Waves equation in dimension 3. Math. Acad. Sci. Paris 347, 897–902 (2009)

    MathSciNet  Google Scholar 

  24. Grünrock, A., Herr, S.: Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data. SIAM J. Math. Anal. 39, 1890–1920 (2008)

    MathSciNet  Google Scholar 

  25. Guo, Z., Kwon, S., Oh, T.: Poincaré–Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. Commun. Math. Phys. 322, 19–48 (2013)

    ADS  Google Scholar 

  26. Guo, Z., Wu, Y.: Global well-posedness for the derivative nonlinear Schrödinger equation in \(H^{\frac{1}{2}}(\mathbb{R} )\). Discrete Contin. Dyn. Syst. 37, 257–264 (2017)

    MathSciNet  Google Scholar 

  27. Hayashi, N.: The initial value problem for the derivative nonlinear Schrödinger equation in the energy space. Nonlinear Anal. 20, 823–833 (1993)

    MathSciNet  Google Scholar 

  28. Hayashi, N., Ozawa, T.: On the derivative nonlinear Schrödinger equation. Physica D 55, 14–36 (1992)

    ADS  MathSciNet  Google Scholar 

  29. Hayashi, N., Ozawa, T.: Finite energy solutions of nonlinear Schrödinger equations of derivative type. SIAM J. Math. Anal. 25, 1488–1503 (1994)

    MathSciNet  Google Scholar 

  30. Herr, S.: On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition. Int. Math. Res. Not., pp. 1–33 (2006)

  31. Isom, B., Mantzavinos, D., Oh, S., Stefanov, A.: Polynomial bound and nonlinear smoothing for the Benjamin-Ono equation on the circle (2020). arXiv:2001.06896

  32. Jenkins, R., Liu, J., Perry, P., Sulem, C.: Global existence for the derivative nonlinear Schrödinger equation with arbitrary spectral singularities. Anal. PDE 13, 1539–1578 (2020)

    MathSciNet  Google Scholar 

  33. Kaup, D., Newell, A.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 789–801 (1978)

    ADS  Google Scholar 

  34. Killip, R., Visan, M., Zhang, X.: Low regularity conservation laws for integrable PDE. Geom. Funct. Anal. 28, 1062–1090 (2018)

    MathSciNet  Google Scholar 

  35. Kishimoto, N.: Unconditional uniqueness of solutions for nonlinear dispersive equations (2019). arXiv:1911.04349

  36. Klaus, F., Schippa, R.: A priori estimates for the derivative nonlinear Schrödinger equation (2020). arXiv:2007.13161

  37. Koch, H., Tataru, D.: Conserved energies for the cubic nonlinear Schrödinger equation in one dimension. Duke Math. J. 167, 3207–3313 (2018)

    MathSciNet  Google Scholar 

  38. Miao, C., Wu, Y., Xu, G.: Global well-posedness for Schrödinger equations with derivative in \(H^{1/2}(\mathbb{R} )\). J. Differ. Equ. 251, 2164–2195 (2011)

    ADS  Google Scholar 

  39. Mio, K., Minami, K., Ogino, T., Takeda, S.: Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn. 41, 265–271 (1976)

    ADS  Google Scholar 

  40. Mosincat, R.: Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in \(H^{\frac{1}{2}}\). J. Differ. Equ. 263, 4658–4722 (2017)

    ADS  MathSciNet  Google Scholar 

  41. Mosincat, R., Oh, T.: A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle. C. R. Acad. Sci. Paris 353, 837–841 (2015)

    MathSciNet  Google Scholar 

  42. Mosincat, R., Yoon, H.: Unconditional uniqueness for the derivative nonlinear Schrödinger equation on the real line. Discrete Contin. Dyn. Syst. 40, 47–80 (2020)

    MathSciNet  Google Scholar 

  43. Nahmod, A., Oh, T., Rey-Bellet, L., Staffilani, G.: Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS. J. Eur. Math. Soc. 14, 1275–1330 (2012)

    MathSciNet  Google Scholar 

  44. Oh, S.: Resonant phase-shift and global smoothing of the periodic Korteweg–de Vries equation in low regularity settings. Adv. Differ. Equ. 18, 633–662 (2013)

    MathSciNet  Google Scholar 

  45. Oh, S., Stefanov, A.: On quadratic Schrödinger equations in \(R^{1+1}\): a normal form approach. J. Lond. Math. Soc. 86, 499–519 (2012)

    MathSciNet  Google Scholar 

  46. Oh, S., Stefanov, A.: Smoothing and growth bound of periodic generalized Korteweg–de Vries equation (2020). arXiv:2001.08984

  47. Shatah, J.: Normal forms and quadratic nonlinear Klein–Gordon equations. Commun. Pure Appl. Math. 38, 685–696 (1985)

    MathSciNet  Google Scholar 

  48. Sohinger, V.: Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on \({\mathbb{R} }\). Indiana Univ. Math. J. 60, 1487–1516 (2011)

    MathSciNet  Google Scholar 

  49. Sohinger, V.: Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on \(\mathbb{S} \). Differ. Integr. Equ. 24, 653–718 (2011)

    MathSciNet  Google Scholar 

  50. Staffilani, G.: Quadratic forms for a 2-D semilinear Schrödinger equation. Duke Math. J. 86, 79–107 (1997)

    MathSciNet  Google Scholar 

  51. Staffilani, G.: On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations. Duke Math. J. 86, 109–142 (1997)

    MathSciNet  Google Scholar 

  52. Takaoka, H.: Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity. Adv. Differ. Equ. 4, 561–680 (1999)

    Google Scholar 

  53. Talbut, B.: Low regularity conservation laws for the Benjamin–Ono equation (2019). arXiv:1812.00505v2

  54. Win, Y.: Global well-posedness of the derivative nonlinear Schrödinger equations on T. Funkcial. Ekvac. 53, 51–88 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley Isom.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bradley Isom was partially supported by a graduate research assistantship from grant NSF-DMS 1908626. Dionyssios Mantzavinos acknowledges partial support from grant NSF-DMS 2206270. Atanas Stefanov acknowledges partial support from grant NSF-DMS 1908626. The authors are thankful to the anonymous referee for detailed remarks and suggestions that led to the improvement of the paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isom, B., Mantzavinos, D. & Stefanov, A. Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrödinger equation. Math. Ann. 388, 2289–2329 (2024). https://doi.org/10.1007/s00208-022-02492-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02492-8

Mathematics Subject Classification

Navigation